摘要:
A semiconductor device includes semiconductor layers, an anode electrode, and a cathode electrode. The semiconductor layers include a composition change layer, the anode electrode is electrically connected to one of principal surfaces of the composition change layer through a formation of a Schottky junction between the anode electrode and a part of the semiconductor layers, the cathode electrode is electrically connected to the other of the principal surfaces of the composition change layer through a formation of a junction between the cathode electrode and another part of the semiconductor layers, the anode electrode and the cathode electrode are capable of applying a voltage to the composition change layer in a direction perpendicular to the principal surface.
摘要:
[Problem to be Solved] Provided is a semiconductor device in which the trade-off between the pressure resistance and the on-state resistance is improved and the performance is improved.[Solution] The semiconductor device 1 of the present invention comprises semiconductor layers 20 to 23, an anode electrode 12, and a cathode electrode 13, wherein the semiconductor layers include a composition change layer 23, the anode electrode 12 is electrically connected to one of principal surfaces of the composition change layer through a formation of a Schottky junction between the anode electrode 12 and a part of the semiconductor layers, the cathode electrode 13 is electrically connected to the other of the principal surfaces of the composition change layer through a formation of a junction between the cathode electrode 13 and another part of the semiconductor layers, the anode electrode 12 and the cathode electrode 13 are capable of applying a voltage to the composition change layer 23 in a direction perpendicular to the principal surface, andthe composition change layer 23 has composition that changes from a cathode electrode 13 side toward an anode electrode 12 side in the direction perpendicular to the principal surface of the composition change layer, has a negative polarization charge that is generated due to the composition that changes, and contains a donor impurity.
摘要:
There is provided a semiconductor apparatus capable of achieving both a reverse blocking characteristic and a low on-resistance. The semiconductor apparatus includes a first semiconductor layer including a channel layer, a source electrode formed on the first semiconductor layer, a drain electrode formed at a distance from the source electrode on the first semiconductor layer, and a gate electrode formed between the source electrode and the drain electrode on the first semiconductor layer. The drain electrode includes a first drain region where reverse current between the first semiconductor layer and the first drain region is blocked, and a second drain region formed at a greater distance from the gate electrode than the first drain region, where a resistance between the first semiconductor layer and the second drain region is lower than a resistance between the first semiconductor layer and the first drain region.
摘要:
There is provided a semiconductor apparatus capable of achieving both a reverse blocking characteristic and a low on-resistance. The semiconductor apparatus includes a first semiconductor layer including a channel layer, a source electrode formed on the first semiconductor layer, a drain electrode formed at a distance from the source electrode on the first semiconductor layer, and a gate electrode formed between the source electrode and the drain electrode on the first semiconductor layer. The drain electrode includes a first drain region where reverse current between the first semiconductor layer and the first drain region is blocked, and a second drain region formed at a greater distance from the gate electrode than the first drain region, where a resistance between the first semiconductor layer and the second drain region is lower than a resistance between the first semiconductor layer and the first drain region.
摘要:
Provided is a semiconductor device in which the trade-off between the withstand voltage and the on-resistance is improved and the performance is increased. A semiconductor device comprises a substrate 1, a first n-type semiconductor layer 21′, a second n-type semiconductor layer 23, a p-type semiconductor layer 24, and a third n-type semiconductor layer 25′, wherein the first n-type semiconductor layer 21′, the second n-type semiconductor layer 23, the p-type semiconductor layer 24, and the third n-type semiconductor layer 25′ are laminated at the upper side of the substrate 1 in this order. The drain electrode 13 is in ohmic-contact with the first n-type semiconductor layer 21′ and the source electrode 12 is in ohmic-contact with the third n-type semiconductor layer 25′. A gate electrode 14 is arranged so as to fill an opening portion to be filled that extends from the third n-type semiconductor layer 25′ to the second n-type semiconductor layer 23, and the gate electrode 14 is in contact with the upper surface of the second n-type semiconductor layer 23, the side surfaces of the p-type semiconductor layer 24, and the side surfaces of the third n-type semiconductor layer 25′. The second n-type semiconductor layer 23 has composition that changes from the drain electrode 13 side toward the source electrode 12 side in the direction perpendicular to the plane of the substrate 1 and contains donor impurity.
摘要:
Provided is a semiconductor device in which the trade-off between the withstand voltage and the on-resistance is improved and the performance is increased.A semiconductor device comprises a substrate 1, a first n-type semiconductor layer 21′, a second n-type semiconductor layer 23, a p-type semiconductor layer 24, and a third n-type semiconductor layer 25′, wherein the first n-type semiconductor layer 21′, the second n-type semiconductor layer 23, the p-type semiconductor layer 24, and the third n-type semiconductor layer 25′ are laminated at the upper side of the substrate 1 in this order. The drain electrode 13 is in ohmic-contact with the first n-type semiconductor layer 21′ and the source electrode 12 is in ohmic-contact with the third n-type semiconductor layer 25′. A gate electrode 14 is arranged so as to fill an opening portion to be filled that extends from the third n-type semiconductor layer 25′ to the second n-type semiconductor layer 23, and the gate electrode 14 is in contact with the upper surface of the second n-type semiconductor layer 23, the side surfaces of the p-type semiconductor layer 24, and the side surfaces of the third n-type semiconductor layer 25′. The second n-type semiconductor layer 23 has composition that changes from the drain electrode 13 side toward the source electrode 12 side in the direction perpendicular to the plane of the substrate 1 and contains donor impurity.
摘要:
The present invention provides a field effect transistor which can achieve both of a high threshold voltage and a low on-state resistance, a method for producing the same, and an electronic device. In the field effect transistor, each of a buffer layer 112, a channel layer 113, a barrier layer 114, and a spacer layer 115 is formed of a group-III nitride semiconductor, and each of the upper surfaces thereof is a group-III atomic plane that is perpendicular to a (0001) crystal axis. The lattice-relaxed buffer layer 112, the channel layer 113 having a compressive strain, and the barrier layer 114 having a tensile strain, and the spacer layer 115 having a compressive strain are laminated on a substrate 100 in this order. The gate insulating film 14 is arranged on the spacer layer 115. The gate electrode 15 is arranged on the gate insulating film 14. The source electrode 161 and the drain electrode 162 are electrically connected to the channel layer 113 directly or via another component.
摘要:
The present invention provides a field effect transistor which can achieve both of a high threshold voltage and a low on-state resistance, a method for producing the same, and an electronic device. In the field effect transistor, each of a buffer layer 112, a channel layer 113, a barrier layer 114, and a spacer layer 115 is formed of a group-III nitride semiconductor, and each of the upper surfaces thereof is a group-III atomic plane that is perpendicular to a (0001) crystal axis. The lattice-relaxed buffer layer 112, the channel layer 113 having a compressive strain, and the barrier layer 114 having a tensile strain, and the spacer layer 115 having a compressive strain are laminated on a substrate 100 in this order. The gate insulating film 14 is arranged on the spacer layer 115. The gate electrode 15 is arranged on the gate insulating film 14. The source electrode 161 and the drain electrode 162 are electrically connected to the channel layer 113 directly or via another component.
摘要:
The present invention provides a field effect transistor which can achieve both of a high threshold voltage and a low on-state resistance, a method for producing the same, and an electronic device. In the field effect transistor, each of a buffer layer 112, a channel layer 113, a barrier layer 114, and a spacer layer 115 is formed of a group-III nitride semiconductor, and each of the upper surfaces thereof is a group-III atomic plane that is perpendicular to a (0001) crystal axis. The lattice-relaxed buffer layer 112, the lattice-relaxed channel layer 113, and the barrier layer 114 having a tensile strain, and the spacer layer 115 are laminated on a substrate 100 in this order. The gate insulating film 14 is arranged on the spacer layer 115. The gate electrode 15 is arranged on the gate insulating film 14. The source electrode 161 and the drain electrode 162 are electrically connected to the channel layer 113 directly or via another component.
摘要:
The present invention provides a semiconductor device that has high electron mobility while reducing a gate leakage current, and superior uniformity and reproducibility of the threshold voltage, and is also applicable to the enhancement mode type. The semiconductor device according to the present invention is a semiconductor device having such a structure formed by sequentially laminating a lower barrier layer composed of lattice-relaxed AlxGa1-xN (0≦x≦1), a channel layer composed of InyGa1-yN (0≦y≦1) with compressive strain and a contact layer composed of AlzGa1-zN (0≦z≦1), wherein a two-dimensional electron gas is produced in the vicinity of an interface of said InyGa1-yN channel layer with said AlzGa1-zN contact layer; a gate electrode is formed so as to be embedded in the recessed portion with intervention of an insulating film, which recessed portion is formed by removing a part of said AlzGa1-zN contact layer by etching it away until said InyGa1-yN channel layer is exposed; and, ohmic electrodes are formed on the AlzGa1-zN contact layer. Thus, there is provided a semiconductor device that has superior uniformity and reproducibility of the threshold voltage while maintaining a low gate leakage current and high electron mobility, and thereby, is capable of operation in enhancement mode.
摘要翻译:本发明提供了一种在降低栅极漏电流的同时具有高电子迁移率并具有优异的阈值电压的均匀性和再现性的半导体器件,并且也适用于增强型。 根据本发明的半导体器件是具有这样的结构的半导体器件,该半导体器件通过顺序地层叠由晶格弛豫的Al x Ga 1-x N(0< n 1; x&n 1; 1)构成的下阻挡层,由InyGa1-yN(0& ; y≦̸ 1)具有压应变和由AlzGa1-zN(0& nlE; z≦̸ 1)组成的接触层,其中在所述In y Ga 1-y N沟道层的界面附近产生二维电子气体与所述AlzGa1 -zN接触层 通过介入绝缘膜形成嵌入在凹陷部分中的栅电极,该凹陷部分通过蚀刻除去所述AlzGa1-zN接触层的一部分而形成,直到所述In y Ga 1-y N沟道层暴露 ; 并且在AlzGa1-zN接触层上形成欧姆电极。 因此,提供了具有优异的阈值电压的均匀性和再现性的半导体器件,同时保持低栅极漏电流和高电子迁移率,从而能够在增强模式下操作。