摘要:
On the p.sup.- substrate, the n.sup.- epitaxial layer is surrounded and isolated by the p well. In the surface of the n.sup.- epitaxial layer, there is provided the p floating region in the vicinity of the p well, on which the sense electrode is provided. The insulation film and the conductive film are formed on the n.sup.- epitaxial layer between the p well and the p floating region to overlap them. The conductive film and the p floating region serve as a composite field plate, which makes it hard that the surface electric field distribution is influenced by the state of electric charge in the surface and relieves the surface electric field by expanding the depletion layer, which extends from the pn junction between the n.sup.31 epitaxial layer and the p well into the n.sup.- epitaxial layer in current blocking state, toward the center of the n.sup.- epitaxial layer. The potential of the p floating region is determined by capacity coupling in the current blocking state and thus the sense voltage characteristics through the sense electrode can be smooth.
摘要:
First and second semiconductor elements are formed in first and second semiconductor element forming regions which have the same thickness, include first and second semiconductor layers and are separated with dielectric isolation from each other. The thickness of the first semiconductor layer is made different between the first and second semiconductor element forming regions, so that the thickness of the second semiconductor layer becomes different between the first and second semiconductor element forming regions. Thus, the semiconductor device may have the semiconductor elements which have second semiconductor layers with different thicknesses in accordance with desired electrical characteristics for each of the semiconductor elements formed in the first and second semiconductor element forming regions, to complement a semiconductor device having the semiconductor elements each of which has independent optimum electrical characteristics.
摘要:
On the p.sup.- substrate, the n.sup.- epitaxial layer is surrounded and isolated by the p well. In the surface of the n.sup.- epitaxial layer, there is provided the p floating region in the vicinity of the p well, on which the sense electrode is provided. The insulation film and the conductive film are formed on the n.sup.- epitaxial layer between the p well and the p floating region to overlap them. The conductive film and the p floating region serve as a composite field plate, which makes it hard that the surface electric field distribution is influenced by the state of electric charge in the surface and relieves the surface electric field by expanding the depletion layer, which extends from the pn junction between the n.sup.- epitaxial layer and the p well into the n.sup.- epitaxial layer in current blocking state, toward the center of the n.sup.- epitaxial layer. The potential of the p floating region is determined by capacity coupling in the current blocking state and thus the sense voltage characteristics through the sense electrode can be smooth.
摘要:
On the p.sup.- substrate, the n.sup.- epitaxial layer is surrounded and isolated by the p well. In the surface of the n.sup.- epitaxial layer, there is provided the p floating region in the vicinity of the p well, on which the sense electrode is provided. The insulation film and the conductive film are formed on the n.sup.- epitaxial layer between the p well and the p floating region to overlap them. The conductive film and the p floating region serve as a composite field plate, which makes it hard that the surface electric field distribution is influenced by the state of electric charge in the surface and relieves the surface electric field by expanding the depletion layer, which extends from the pn junction between the n.sup.- epitaxial layer and the p well into the n.sup.- epitaxial layer in current blocking state, toward the center of the n.sup.- epitaxial layer. The potential of the p floating region is determined by capacity coupling in the current blocking state and thus the sense voltage characteristics through the sense electrode can be smooth.
摘要:
The present application relates to a rubber composition containing a fluororubber, a radical initiator having a 1-minute half-life temperature of 280° C. or higher, and a crosslinking assistant having a melting point of 200° C. or higher and having two or more double bonds between carbon atoms; and a thermoplastic resin composition containing a fluororesin and the rubber composition.
摘要:
A turbocharger includes a turbine wheel having a center hole and a turbine shaft having one end secured on a small-diameter inner circumferential surface of the center hole. A large-diameter inner circumferential surface and a large diameter outer circumferential surface are formed to provide a cylindrical clearance opening toward a bearing housing between the center hole and the outer circumferential surface of the turbine shaft.
摘要:
The present application relates to a rubber composition containing a fluororubber, a radical initiator having a 1-minute half-life temperature of 280° C. or higher, and a crosslinking assistant having a melting point of 200° C. or higher and having two or more double bonds between carbon atoms; and a thermoplastic resin composition containing a fluororesin and the rubber composition.
摘要:
A semiconductor integrated circuit device according to the present invention has a field plate disposed between the element isolation region which surrounds a semiconductor active element and an electrode wiring which is disposed to traverse the element isolation region while being electrically connected with the semiconductor active element, and a predetermined voltage is applied to the field plate. Accordingly, a concentration of the electric field is relieved not only at the boundary region between the element isolating region and the surface of the semiconductor active element which the electrode wiring traverses, but also at the surface of the semiconductor active element under the edge of the field plate, which eventually makes it possible to raise the breakdown-voltage of the semiconductor integrated circuit device.