Abstract:
The present invention describes a process for converting a heavy feed which is flexible for the production of propylene, gasoline and middle distillate.The process uses a catalytic cracking unit and a unit for the oligomerization of C4 to C9 olefins. The process of the invention includes selective hydrogenation of the unrefined gasoline cut obtained from the catalytic cracking unit and separation between a light gasoline cut and a heavy gasoline cut, the light gasoline being directed to the oligomerization unit.
Abstract:
A process for the treatment of a gasoline containing sulphur-containing compounds, olefins and diolefins, comprising the following steps: a) fractionating the gasoline in a manner such as to recover at least one intermediate gasoline cut, MCN, comprising hydrocarbons and wherein the temperature difference (ΔT) between the 5% and 95% by weight distillation points is less than 60° C.; b) desulphurizing the intermediate gasoline cut MCN alone and in the presence of a hydrodesulphurization catalyst and hydrogen in a manner such as to produce a partially desulphurized intermediate gasoline cut MCN; and c) fractionating, in a splitter, the at least partially desulphurized intermediate gasoline cut MCN which has not undergone catalytic treatment subsequent to step b), in a manner such as to recover an intermediate gasoline with low sulphur and mercaptans contents from the column head and a cut of hydrocarbons containing sulphur-containing compounds including mercaptans from the column bottom.
Abstract:
The invention of the current application is a process for eliminating arsenic from a hydrocarbon feed which is at least partially liquid, including steps a and b.Step a includes bringing the hydrocarbon feed and hydrogen into contact with a first capture mass including a support and at least one metal M1 from group VIB and at least two metals M2 and M3 from group VIII.Step b includes bringing the hydrocarbon feed and hydrogen into contact with a second capture mass in the sulphide form including a support and nickel, the quantity of nickel being at least 5% by weight of NiO with respect to the total weight of the second capture mass.Step a) is either carried out before step b) or carried out simultaneously with step b).
Abstract:
A process reducing sulfides R1-S-R2, with R1 and R2 methyl or ethyl, in a gasoline containing diolefins, mono-olefins and sulphur: A) contacting gasoline in mixture with a light gasoline cut recycled from C) and hydrogen in a reactor with catalyst A at least one VIb metal and at least one non noble group VIII metal on a support, producing effluent having diolefins and sulfides R1-S-R2, with R1 and R2 methyl or ethyl radicals lower than that that of the starting gasoline; B) the effluent from A) is sent into a fractionating column separating at the top a light gasoline cut containing hydrocarbons having less than 6 carbon atoms per molecule and at the bottom a heavy gasoline cut containing hydrocarbons having 6 and more than 6 carbon atoms per molecule; C) recycling a part of the light gasoline from B) to the reactor of A) with a recycle ratio 0.1 to 0.7.
Abstract:
A process for the concomitant production of at least two hydrocarbon cuts with low sulphur contents from a mixture of hydrocarbons having a total sulphur content in the range 30 to 10000 ppm by weight, by a) hydrodesulphurization in the presence of hydrogen and a hydrodesulphurization catalyst; b) separating hydrogen sulphide from the partially desulphurized effluent obtained from a); c) hydrodesulphurization of the partially desulphurized mixture obtained from b) in the presence of hydrogen and a hydrodesulphurization catalyst, the temperature of the second hydrodesulphurization being higher than that of the first hydrodesulphurization; d) fractionating the desulphurized mixture obtained in c) into at least two desulphurized hydrocarbon cuts.
Abstract:
A process for the treatment of a gasoline containing sulphur-containing compounds, olefins and diolefins: a) fractionating the gasoline into at least: a light gasoline cut LCN; a primary intermediate gasoline cut, MCN; and a primary heavy gasoline cut HHCN; b) desulphurizing the primary intermediate gasoline cut MCN alone producing an at least partially desulphurized primary intermediate gasoline cut MCN; c) desulphurizing the primary heavy gasoline cut HHCN alone producing an at least partially desulphurized primary heavy gasoline cut HHCN; d) sending, as a mixture, the partially desulphurized primary intermediate gasoline cut MCN and the partially desulphurized primary heavy gasoline cut HHCN to a separation column separating a gaseous stream containing hydrogen and H2S, a secondary intermediate gasoline cut MCN with low sulphur and mercaptans contents and a secondary heavy gasoline cut HHCN containing sulphur-containing compounds including recombinant mercaptans; e) desulphurizing the secondary heavy gasoline cut HHCN obtained from step d).
Abstract:
The present application concerns a process for the treatment of a gasoline containing sulphur-containing compounds and olefins, with the following steps: a) a step for hydrodesulphurization of said gasoline in order to produce an effluent which is depleted in sulphur by passing the gasoline mixed with hydrogen over at least one hydrodesulphurization catalyst; b) a step for separating the partially desulphurized gasoline from the hydrogen introduced in excess as well as the H2S formed during step a); c) a catalytic step for sweetening desulphurized gasoline obtained from step b), which converts residual mercaptans into thioethers via an addition reaction with the olefins.
Abstract:
A process for the desulphurization of a gasoline cut containing sulphur-containing compounds, olefins and diolefins, involving (a) fractionating the gasoline in order to recover a light gasoline cut LCN and a first heavy gasoline cut HCN; (b) desulphurization of the first heavy gasoline cut HCN; (c) partially condensing desulphurization effluent obtained from b) in a manner such as to produce a gaseous phase of hydrogen and H2S and a liquid hydrocarbon phase HCN of dissolved H2S; (d) separating the liquid hydrocarbon phase HCN into an intermediate gasoline cut MCN and a second heavy gasoline cut HHCN; (e) carrying out a second desulphurization of the second heavy gasoline cut HHCN.