Abstract:
Provided are a dual-phase intermetallic interconnection structure and a fabricating method thereof. The dual-phase intermetallic interconnection structure includes a first intermetallic compound, a second intermetallic compound, a first solder layer, and a second solder layer. The second intermetallic compound covers and surrounds the first intermetallic compound. The first intermetallic compound and the second intermetallic compound contain different high-melting point metal. The first solder layer and the second solder layer are disposed at the opposite sides of the second intermetallic compound, respectively. The first intermetallic compound is adapted to fill the micropore defects generated during the formation of the second intermetallic compound.
Abstract:
A die bonding method and a die bonding structure of a light emitting diode package are provided. The die bonding structure includes a light transmissive adhesive layer formed on a surface of a base plate of a light emitting diode chip, a first metal layer formed on the adhesive layer, a second metal layer formed on a packaging base plate and multiple metallic compound layers. The metallic compound layers are formed by spreading a third metal layer disposed on at least one of the first metal layer and the second metal layer into the first metal layer and the second metal layer after the third metal layer is heated up. The melting points of the first metal layer and the second metal layer are higher than the melting point of the third metal layer.
Abstract:
Provided are a dual-phase intermetallic interconnection structure and a fabricating method thereof. The dual-phase intermetallic interconnection structure includes a first intermetallic compound, a second intermetallic compound, a first solder layer, and a second solder layer. The second intermetallic compound covers and surrounds the first intermetallic compound. The first intermetallic compound and the second intermetallic compound contain different high-melting point metal. The first solder layer and the second solder layer are disposed at the opposite sides of the second intermetallic compound, respectively. The first intermetallic compound is adapted to fill the micropore defects generated during the formation of the second intermetallic compound.