Abstract:
Cameras are located within the display area of a display. In-display cameras allow for thinner display bezels. In-display cameras allow for the creation of ultra-high resolution images. The ability to capture an object from multiple perspectives allows for holographic image recording and playback. Multiple views of an image can be captured with varying depths of focus, allowing an image's depth of field to be adjusted during post processing. In-display cameras can also be used for user authentication, touch detection and three-dimensional gesture recognition. Thermal sensors located within the display area allow for control of the display temperature, improved control over system performance, and compensation for micro-LED degradation that can occur due to aging or increased temperature. Microlens assemblies located above pixels can adjust the viewing cone angle of the display or a portion of the display and microassemblies located under individual pixels or pixel arrays can adjust a viewing angle.
Abstract:
Cameras are located within the display area of a display. In-display cameras allow for thinner display bezels. In-display cameras allow for the creation of ultra-high resolution images. The ability to capture an object from multiple perspectives allows for holographic image recording and playback. Multiple views of an image can be captured with varying depths of focus, allowing an image's depth of field to be adjusted during post processing. In-display cameras can also be used for user authentication, touch detection and three-dimensional gesture recognition. Thermal sensors located within the display area allow for control of the display temperature, improved control over system performance, and compensation for micro-LED degradation that can occur due to aging or increased temperature. Microlens assemblies located above pixels can adjust the viewing cone angle of the display or a portion of the display and microassemblies located under individual pixels or pixel arrays can adjust a viewing angle.
Abstract:
Cameras are located within the display area of a display. In-display cameras allow for thinner display bezels. In-display cameras allow for the creation of ultra-high resolution images. The ability to capture an object from multiple perspectives allows for holographic image recording and playback. Multiple views of an image can be captured with varying depths of focus, allowing an image's depth of field to be adjusted during post processing. In-display cameras can also be used for user authentication, touch detection and three-dimensional gesture recognition. Thermal sensors located within the display area allow for control of the display temperature, improved control over system performance, and compensation for micro-LED degradation that can occur due to aging or increased temperature. Microlens assemblies located above pixels can adjust the viewing cone angle of the display or a portion of the display and microassemblies located under individual pixels or pixel arrays can adjust a viewing angle.
Abstract:
An apparatus for managing HDMI power is described herein. The method for managing HDMI power can include connecting a high definition multimedia interface (HDMI) of a computing device to a panel, where the computing device is inactive. The method can also include detecting, with the panel, a connection state and an energy request of the computing device through the HDMI. The method can provide power through the HDMI from a power supply of the panel to the computing device based on the connection state and the energy request of the computing device. The method can activate the computing device.
Abstract:
Microphones are located between pixel display elements (e.g., micro-LEDs and OLEDs) in a display. Display-integrated microphones allow displays to have thinner bezels. Audio processing components can also be incorporated into the display and allow audio processing offloading from processors external to the display. Arrays of microphones allow for the beamforming of received audio signals to enhance the detection of sound from remote audio sources. Piezoelectric elements can also be integrated into a display to allow for localized haptic feedback. Integrated piezoelectric elements can act as speakers and beamforming techniques can be used to activate sets of piezoelectric elements in coordination to direct sound to a specific location external to the display. Piezoelectric elements can aid in display thermal management by creating acoustic waves to move heated air within a display to create a more uniform thermal profile within the display or to remove excess heat from the display.
Abstract:
A first optimal CPU frequency that produces minimal power consumption for a CPU/platform combination may be calculated by using an Efficiency Aware Race to Halt (EARtH) algorithm, which ignores the power efficiency curve of the voltage regulator (VR). These results may then be modified by applying the power efficiency curve of the associated VR to determine a second optimal CPU frequency that produces power consumption that is less than the value calculated by the EARtH algorithm.
Abstract:
A first optimal CPU frequency that produces minimal power consumption for a CPU/platform combination may be calculated by using an Efficiency Aware Race to Halt (EARtH) algorithm, which ignores the power efficiency curve of the voltage regulator (VR). These results may then be modified by applying the power efficiency curve of the associated VR to determine a second optimal CPU frequency that produces power consumption that is less than the value calculated by the EARtH algorithm.
Abstract:
Cameras are located within the display area of a display. In-display cameras allow for thinner display bezels. In-display cameras allow for the creation of ultra-high resolution images. The ability to capture an object from multiple perspectives allows for holographic image recording and playback. Multiple views of an image can be captured with varying depths of focus, allowing an image's depth of field to be adjusted during post processing. In-display cameras can also be used for user authentication, touch detection and three-dimensional gesture recognition. Thermal sensors located within the display area allow for control of the display temperature, improved control over system performance, and compensation for micro-LED degradation that can occur due to aging or increased temperature. Microlens assemblies located above pixels can adjust the viewing cone angle of the display or a portion of the display and microassemblies located under individual pixels or pixel arrays can adjust a viewing angle.
Abstract:
An apparatus and method is described herein for reducing noise in a power distribution network for an interface. The power distribution network is characterized. And based on that characterization, worst case patterns for the interface are predicted and avoided. As one example, characterization includes providing a stimulus, such as a step function stimulus, and determining a mathematical function response, such as a step function response. Then, based on the step function response, a resonant frequency for the power distribution network is determined; from which patterns that cause the resonant frequency are identified/predicted. And when identified patterns are detected, they are scrambled or manipulated to avoid causing a worst-case noise scenario in an interface's power distribution network.
Abstract:
A display device includes a backplane, where a portion of the backplane is associated with a particular pixel of a display, and the display includes an array of pixels. The display further includes at least a particular light emitting diode (LED) on the portion of the backplane to implement the particular pixel and local memory located with the particular LED on the portion of the backplane, where the local memory is to store data to be used to control the particular LED and presentation at the particular pixel.