Abstract:
An embodiment of a method for manufacturing a semiconductor device includes: providing a monocrystalline semiconductor substrate having a first side; forming a plurality of recess structures in the semiconductor substrate at the first side; filling the recess structures with a dielectric material to form dielectric islands in the recess structures; forming a semiconductor layer on the first side of the semiconductor substrate to cover the dielectric islands; and subjecting the semiconductor layer to heat treatment and recrystallizing the semiconductor layer to form a recrystallized semiconductor layer, so that a crystal structure of the recrystallized semiconductor layer adapts to a crystal structure of the semiconductor substrate, and so that the semiconductor substrate and the semiconductor layer together form a compound wafer with the dielectric islands at least partially buried in the semiconductor material of the compound wafer.
Abstract:
A method of fabricating a semiconductor device includes forming a buried insulation region within a substrate by processing the substrate using etching and deposition processes. A semiconductor layer is formed over the buried insulation region at a first side of the substrate. Device regions are formed in the semiconductor layer. The substrate is thinned from a second side of the substrate to expose the buried insulation region. The buried insulation region is selectively removed to expose a bottom surface of the substrate. A conductive region is formed under the bottom surface of the substrate.
Abstract:
According to various embodiments, a method for processing a substrate may include: forming a dielectric layer over the substrate, the dielectric layer may include a plurality of test regions; forming an electrically conductive layer over the dielectric layer to contact the dielectric layer in the plurality of test regions; simultaneously electrically examining the dielectric layer in the plurality of test regions, wherein portions of the electrically conductive layer contacting the dielectric layer in the plurality of test regions are electrically conductively connected with each other by an electrically conductive material; and separating the electrically conductive layer into portions of the electrically conductive layer contacting the dielectric layer in the plurality of test regions from each other.
Abstract:
An embodiment of a method for manufacturing a semiconductor device includes: providing a monocrystalline semiconductor substrate having a first side; forming a plurality of recess structures in the semiconductor substrate at the first side; filling the recess structures with a dielectric material to form dielectric islands in the recess structures; forming a semiconductor layer on the first side of the semiconductor substrate to cover the dielectric islands; and subjecting the semiconductor layer to heat treatment and recrystallizing the semiconductor layer to form a recrystallized semiconductor layer, so that a crystal structure of the recrystallized semiconductor layer adapts to a crystal structure of the semiconductor substrate, and so that the semiconductor substrate and the semiconductor layer together form a compound wafer with the dielectric islands at least partially buried in the semiconductor material of the compound wafer.
Abstract:
According to various embodiments, a method for processing a substrate may include: forming a dielectric layer over the substrate, the dielectric layer may include a plurality of test regions; forming an electrically conductive layer over the dielectric layer to contact the dielectric layer in the plurality of test regions; simultaneously electrically examining the dielectric layer in the plurality of test regions, wherein portions of the electrically conductive layer contacting the dielectric layer in the plurality of test regions are electrically conductively connected with each other by an electrically conductive material; and separating the electrically conductive layer into portions of the electrically conductive layer contacting the dielectric layer in the plurality of test regions from each other.
Abstract:
A semiconductor device includes a semiconductor body and an edge termination structure. The edge termination structure comprises a first oxide layer, a second oxide layer, a semiconductor mesa region between the first oxide layer and the second oxide layer, and a doped field region comprising a first section in the semiconductor mesa region, and a second section in a region below the semiconductor mesa region. The second section overlaps the first and the second oxide layers in the region below the semiconductor mesa region.
Abstract:
A method for processing a semiconductor wafer is proposed. The method may include reducing a thickness of the semiconductor wafer. A carrier structure is placed on a first side of the semiconductor wafer, e.g. before or after reducing the thickness of the semiconductor wafer. The method further includes providing a support structure on a second side of the semiconductor wafer opposite to the first side, e.g. after reducing the thickness of the semiconductor wafer. Methods for welding a support structure onto a semiconductor wafer are proposed. Further, semiconductor composite structures with support structures welded onto a semiconductor wafer are proposed.
Abstract:
A method for processing a semiconductor wafer is proposed. The method may include: reducing a thickness of the semiconductor wafer; before or after reducing the thickness of the semiconductor wafer, placing a carrier structure at a first side of the semiconductor wafer; and after reducing the thickness of the semiconductor wafer, providing a support structure at a second side of the semiconductor wafer opposite to the first side. Methods for welding a support structure onto a semiconductor wafer are proposed. Further, semiconductor composite structures with support structures welded onto a semiconductor wafer are proposed.
Abstract:
A method of fabricating a semiconductor device includes forming a buried insulation region within a substrate by processing the substrate using etching and deposition processes. A semiconductor layer is formed over the buried insulation region at a first side of the substrate. Device regions are formed in the semiconductor layer. The substrate is thinned from a second side of the substrate to expose the buried insulation region. The buried insulation region is selectively removed to expose a bottom surface of the substrate. A conductive region is formed under the bottom surface of the substrate.
Abstract:
A semiconductor device includes a semiconductor body and an edge termination structure. The edge termination structure comprises a first oxide layer, a second oxide layer, a semiconductor mesa region between the first oxide layer and the second oxide layer, and a doped field region comprising a first section in the semiconductor mesa region, and a second section in a region below the semiconductor mesa region. The second section overlaps the first and the second oxide layers in the region below the semiconductor mesa region.