Abstract:
A MEMS component includes a semiconductor substrate stack having a first semiconductor substrate and a second semiconductor substrate, wherein the semiconductor substrate stack has a cavity formed within the first and second semiconductor substrates, and wherein at least the first or the second semiconductor substrate has an access opening for gas exchange between the cavity and an environment. A radiation source is arranged at the first semiconductor substrate, and a radiation detector is arranged at the second semiconductor substrate. Two mutually spaced apart reflection elements are arranged in a beam path between the radiation source and the radiation detector, wherein one reflection element is partly transmissive to the emitted radiation from the cavity in the direction of the radiation detector, and wherein an interspace between the two mutually spaced apart reflection elements has a length that is at least ten times the wavelength of the emitted radiation.
Abstract:
A method for processing a substrate assembly with a semiconductor device layer includes: arranging an auxiliary carrier at the substrate assembly such that a connection surface of the auxiliary carrier and a first surface of the substrate assembly directly adjoin each other; fixedly attaching the auxiliary carrier to the substrate assembly by melting a carrier portion of the auxiliary carrier and a substrate portion of the substrate assembly that directly adjoins the carrier portion such that the auxiliary carrier and the substrate assembly locally fuse only in fused portions of the auxiliary carrier and the substrate assembly, wherein the fused portions are laterally separated from each other by at least one unfused portion; and processing the semiconductor device layer of the substrate assembly with the auxiliary carrier fixedly attached to the substrate assembly.
Abstract:
A method includes kicking out impurity atoms from substitutional sites of a crystal lattice of a semiconductor body by implanting particles via a first surface into the semiconductor body, reducing a thickness of the semiconductor body by removing semiconductor material of the semiconductor body, and annealing the semiconductor body in a first annealing process at a temperature of between 300° C. and 450° C. to diffuse impurity atoms out of the semiconductor body.
Abstract:
A MEMS component includes a semiconductor substrate stack having a first semiconductor substrate and a second semiconductor substrate, wherein the semiconductor substrate stack has a cavity formed within the first and second semiconductor substrates, and wherein at least the first or the second semiconductor substrate has an access opening for gas exchange between the cavity and an environment. A radiation source is arranged at the first semiconductor substrate, and a radiation detector is arranged at the second semiconductor substrate. Two mutually spaced apart reflection elements are arranged in a beam path between the radiation source and the radiation detector, wherein one reflection element is partly transmissive to the emitted radiation from the cavity in the direction of the radiation detector, and wherein an interspace between the two mutually spaced apart reflection elements has a length that is at least ten times the wavelength of the emitted radiation.
Abstract:
A method for forming a semiconductor device includes forming a plurality of non-semiconductor material portions at a first side of a semiconductor substrate; forming semiconductor material on the plurality of non-semiconductor material portions to bury the plurality of non-semiconductor material portions within semiconductor material; removing at least a portion of the semiconductor substrate from a second side of the semiconductor substrate to uncover the plurality of non-semiconductor material portions at a backside of the semiconductor device; and forming a rough surface at the backside of the semiconductor device by removing at least a subset of the plurality of non-semiconductor material portions while at least a part of a semiconductor material located laterally between the plurality of non-semiconductor material portions remains or by removing at least a part of a semiconductor material located laterally between the plurality of non-semiconductor material portions while the plurality of non-semiconductor material portions remain.
Abstract:
A method of manufacturing a structure in a semiconductor body comprises forming a first mask above a first surface of the semiconductor body. The first mask comprises an opening surrounding a first portion of the first mask, thereby separating the first portion and a second portion of the first mask. The semiconductor body is processed through the opening at the first surface. The opening is increased by removing at least part of the first mask in the first portion while maintaining the first mask in the second portion. The semiconductor body is further processed through the opening at the first surface.
Abstract:
Various embodiments disclosed herein include a capacitive thermometer including a deflectable membrane and a sense electrode. The deflectable membrane is configured to adjust a capacitive value based on a temperature of the deflectable membrane.
Abstract:
In various embodiments, a method of forming a graphene structure is provided. The method may include forming a body including at least one protrusion, and forming a graphene layer at an outer peripheral surface of the at least one protrusion.
Abstract:
A method for removing crystal originated particles from a crystalline silicon body having opposite first and second surfaces includes: increasing a surface area of at least one of the first and second surfaces by an etch process; and oxidizing the increased surface area at a temperature of at least 1000° C. and for a duration of at least 20 minutes.
Abstract:
A method for removing crystal originated particles from a crystalline silicon body having opposite first and second surfaces includes increasing a surface area of at least one of the first and second surfaces. The method further includes oxidizing the increased surface area at a temperature of at least 1000° C. and for a duration of at least 20 minutes.