Abstract:
A chip card module arrangement may include a first surface and a second surface, which are opposite from one another, and a chip receptacle for one or more semiconductor chips on the surfaces. The chip card module arrangement may further include a connecting material receiving area on one of the two surfaces, the connecting material receiving area only taking up a portion of the surface.
Abstract:
An electronic identification document is provided. The electronic identification document may include a carrier, an identification element, a microwave interaction structure configured to interact with microwave radiation, and an alteration element, wherein the alteration element may be part of or in contact with the microwave interaction structure and may be configured to alter, upon interaction of the interaction structure with microwaves, its state from an initial state to a permanent altered state, wherein the permanent altered state may differ from the initial state by a change of the alteration element in color, brightness, saturation, and/or transparency.
Abstract:
In various embodiments, a smart card module is provided. The smart card module may include an electronic circuit in or on a carrier, a smart card module contact layer, which is coupled to the electronic circuit and provides a plurality of smart card module contacts, a mirror layer on the smart card module contact layer, said mirror layer at least partly covering the smart card module contacts, and an optically translucent, electrically conductive oxide layer, which covers the mirror layer. The optically translucent, electrically conductive oxide layer includes a plurality of regions of different layer thicknesses for providing different color components.
Abstract:
An electronic identification document is provided. The electronic identification document may include a carrier, an identification element, a microwave interaction structure configured to interact with microwave radiation, and an alteration element, wherein the alteration element may be part of or in contact with the microwave interaction structure and may be configured to alter, upon interaction of the interaction structure with microwaves, its state from an initial state to a permanent altered state, wherein the permanent altered state may differ from the initial state by a change of the alteration element in color, brightness, saturation, and/or transparency.
Abstract:
A smart card module for a smart card, comprising a chip having electrical contacts at a front side; a first laminate layer, wherein a rear side of the chip is connected to the first laminate layer, the rear side of the chip opposite the front side; a second laminate layer; a first conductive layer, wherein the electrical contacts of the chip are connected to the first conductive layer and the first conductive layer is arranged between the chip and the second laminate layer; and an adhesive material arranged between the chip and the conductive layer and/or the second laminate layer.
Abstract:
A smart card module for use in a smart card includes a microchip and a contact zone for making contact with the microchip by means of a reader. The microchip can be enclosed by an encapsulation which can enclose the microchip completely from all sides.
Abstract:
According to various embodiments, a chip arrangement may be provided, the chip arrangement including: a chip; an antenna structure disposed over a first side of the chip, wherein the antenna structure may include an antenna being electrically conductively coupled to the chip; and a reinforcement structure, wherein the reinforcement structure supports the chip to increase the stability of the chip arrangement.
Abstract:
A sensor device is provided that includes a fingerprint sensor and an antenna coupled with the fingerprint sensor for inductive coupling of the fingerprint sensor with a booster antenna.
Abstract:
A sensor device is provided that includes a fingerprint sensor and an antenna coupled with the fingerprint sensor for inductive coupling of the fingerprint sensor with a booster antenna.
Abstract:
In various exemplary embodiments, a smart card module is provided. The smart card module includes a carrier and a layer stack at least partly covering the carrier. The layer stack includes a reflection layer, a light-transmissive layer arranged above the reflection layer, and a partly light-transmissive silver layer arranged above the light-transmissive layer. The partly light-transmissive silver layer is configured for reflecting part of light impinging on the partly light-transmissive silver layer.