VIA STRUCTURE WITH IMPROVED SUBSTRATE GROUNDING

    公开(公告)号:US20250096114A1

    公开(公告)日:2025-03-20

    申请号:US18469810

    申请日:2023-09-19

    Abstract: Techniques to form semiconductor devices can include one or more via structures having substrate taps. A semiconductor device includes a gate structure around or otherwise on a semiconductor region (or channel region). The gate structure may extend over the semiconductor regions of any number of devices along a given direction. The gate structure may be interrupted, for example, between two transistors with a via structure that extends through an entire thickness of the gate structure and includes a conductive core. The via structure has a conductive foot portion beneath the gate structure and a conductive arm portion extending from the conductive foot portion along a height of the gate structure. The conductive foot portion has a greater width along the given direction than any part of the conductive arm portion. The via structure may further include one or more dielectric layers between the conductive arm portion and the gate structure.

    INTEGRATED CIRCUIT DEVICES WITH BACKSIDE SEMICONDUCTOR STRUCTURES

    公开(公告)号:US20250140649A1

    公开(公告)日:2025-05-01

    申请号:US18498340

    申请日:2023-10-31

    Abstract: An IC device may include a semiconductor structure and a backside semiconductor structure over the semiconductor structure. The semiconductor structure and backside semiconductor structure may constitute the source or drain region of a transistor. The backside semiconductor structure may be closer to the backside of a substrate of the IC device than the semiconductor structure. The backside semiconductor structure may be formed at a lower temperature than the semiconductor structure. The backside semiconductor structure may have one or more different materials from the semiconductor structure. For instance, a semiconductor material in the backside semiconductor structure may have a different crystal direction from a semiconductor material in the semiconductor structure. As another example, the backside semiconductor structure may have one or more different chemical compounds from the semiconductor structure. The backside semiconductor structure may be over a backside via that can couple the backside semiconductor structure to a backside metal layer.

    LATERAL ETCHING PROCESS TO REMOVE METAL GATE FOOT STRUCTURES

    公开(公告)号:US20250087530A1

    公开(公告)日:2025-03-13

    申请号:US18463436

    申请日:2023-09-08

    Abstract: Techniques are provided to form semiconductor devices where portions of the gate structure (e.g., foot structures) adjacent to the subfins have been removed. A semiconductor device includes a gate structure around or otherwise on a semiconductor region. The gate structure includes a gate dielectric and a gate electrode. The gate structure may be interrupted, for example, between two transistors with a gate cut that extends through an entire thickness of the gate structure and includes dielectric material to electrically isolate the portions of the gate structure on either side of the gate cut. The gate cut includes dielectric lobe structures that extend outwards from the sidewalls of the gate cut. The lobe structures effectively replace foot structures of the gate structure between the gate cut and subfin portions of the semiconductor fins. Removing the gate foot structures contributes to the reduction of the parasitic capacitance in the semiconductor device.

    INTEGRATED CIRCUIT DEVICE WITH REDUCED N-P BOUNDARY EFFECT

    公开(公告)号:US20240321887A1

    公开(公告)日:2024-09-26

    申请号:US18187801

    申请日:2023-03-22

    CPC classification number: H01L27/0922 H01L29/4966

    Abstract: An IC device may have layout with reduced N-P boundary effect. The IC device may include two rows of transistors. The first row may include one or more P-type transistors. The second row may include N-type transistors. The gate electrode of a P-type transistor may include different conductive materials from the gate electrode of a N-type transistor. Each P-type transistor in the first row may be over a N-type transistor in the second row and contact the N-type transistor in the second row. For instance, the gate of the P-type transistor may contact the gate of the N-type transistor. Vacancy diffusion may occur at the boundary of the P-type transistor and the N-type transistor, causing N-P boundary effect. At least one or more other N-type transistors in the second row do not contact any P-type transistor, which can mitigate the N-P boundary effect in the IC device.

Patent Agency Ranking