摘要:
The present invention provides methods of selectively removing one or more graphene layers from a graphene material by: (1) applying a metal to a surface of the graphene material; and (2) applying a hydrogen containing solution to the surface of the graphene material that is associated with the metal. The hydrogen containing solution dissolves the metal along with one or more layers of graphene associated with the metal, thereby removing the layer(s) of graphene from the graphene material. In some embodiments, the hydrogen containing solution is an acidic solution, such as hydrochloric acid. In some embodiments, the metal is zinc. In some embodiments, the methods of the present invention are utilized to selectively remove one or more layers of graphene from one or more targeted sites on the surface of a graphene material.
摘要:
The present invention provides methods of selectively removing one or more graphene layers from a graphene material by: (1) applying a metal to a surface of the graphene material; and (2) applying a hydrogen containing solution to the surface of the graphene material that is associated with the metal. The hydrogen containing solution dissolves the metal along with one or more layers of graphene associated with the metal, thereby removing the layer(s) of graphene from the graphene material. In some embodiments, the hydrogen containing solution is an acidic solution, such as hydrochloric acid. In some embodiments, the metal is zinc. In some embodiments, the methods of the present invention are utilized to selectively remove one or more layers of graphene from one or more targeted sites on the surface of a graphene material.
摘要:
Drilling fluids comprising graphenes and nanoplatelet additives and methods for production thereof are disclosed. Graphene includes graphite oxide, graphene oxide, chemically-converted graphene, and functionalized chemically-converted graphene. Derivatized graphenes and methods for production thereof are disclosed. The derivatized graphenes are prepared from a chemically-converted graphene through derivatization with a plurality of functional groups. Derivatization can be accomplished, for example, by reaction of a chemically-converted graphene with a diazonium species. Methods for preparation of graphite oxide are also disclosed.
摘要:
Methods for producing macroscopic quantities of oxidized graphene nanoribbons are disclosed herein. The methods include providing a plurality of carbon nanotubes and reacting the plurality of carbon nanotubes with at least one oxidant to form oxidized graphene nanoribbons. The at least one oxidant is operable to longitudinally open the carbon nanotubes. In some embodiments, the reacting step takes place in the presence of at least one acid. In some embodiments, the reacting step takes place in the presence of at least one protective agent. Various embodiments of the present disclosure also include methods for producing reduced graphene nanoribbons by reacting oxidized graphene nanoribbons with at least one reducing agent. Oxidized graphene nanoribbons, reduced graphene nanoribbons and compositions and articles derived therefrom are also disclosed herein.
摘要:
Various aspects of the present invention pertain to methods of sorption of various materials from an environment, including radioactive elements, chlorates, perchlorates, organohalogens, and combinations thereof. Such methods generally include associating graphene oxides with the environment. This in turn leads to the sorption of the materials to the graphene oxides. In some embodiments, the methods of the present invention also include a step of separating the graphene oxides from the environment after the sorption of the materials to the graphene oxides. More specific aspects of the present invention pertain to methods of sorption of radionuclides (such as actinides) from a solution by associating graphene oxides with the solution and optionally separating the graphene oxides from the solution after the sorption.
摘要:
Methods for producing macroscopic quantities of oxidized graphene nanoribbons are disclosed herein. The methods include providing a plurality of carbon nanotubes and reacting the plurality of carbon nanotubes with at least one oxidant to form oxidized graphene nanoribbons. The at least one oxidant is operable to longitudinally open the carbon nanotubes. In some embodiments, the reacting step takes place in the presence of at least one acid. In some embodiments, the reacting step takes place in the presence of at least one protective agent. Various embodiments of the present disclosure also include methods for producing reduced graphene nanoribbons by reacting oxidized graphene nanoribbons with at least one reducing agent. Oxidized graphene nanoribbons, reduced graphene nanoribbons and compositions and articles derived therefrom are also disclosed herein.
摘要:
Methods for dissolving carbon materials such as, for example, graphite, graphite oxide, oxidized graphene nanoribbons and reduced graphene nanoribbons in a solvent containing at least one superacid are described herein. Both isotropic and liquid crystalline solutions can be produced, depending on the concentration of the carbon material The superacid solutions can be formed into articles such as, for example, fibers and films, mixed with other materials such as, for example, polymers, or used for functionalization of the carbon material. The superacid results in exfoliation of the carbon material to produce individual particles of the carbon material. In some embodiments, graphite or graphite oxide is dissolved in a solvent containing at least one superacid to form graphene or graphene oxide, which can be subsequently isolated. In some embodiments, liquid crystalline solutions of oxidized graphene nanoribbons in water are also described.
摘要:
A method of reducing side effects of damage in a human subject exposed to radiation includes administering to the human subject carbon nanotubes in a pharmaceutically acceptable carrier after or prior to exposure to radiation. A composition for reducing radical damage includes a carbon nanotube which is functionalized (1) for substantial water solubility and (2) with a radical trapping agent appended to the carbon nanotube forming a radical scavenger-carbon nanotube conjugate.
摘要:
Methods for producing macroscopic quantities of oxidized graphene nanoribbons are disclosed herein. The methods include providing a plurality of carbon nanotubes and reacting the plurality of carbon nanotubes with at least one oxidant to form oxidized graphene nanoribbons. The at least one oxidant is operable to longitudinally open the carbon nanotubes. In some embodiments, the reacting step takes place in the presence of at least one acid. In some embodiments, the reacting step takes place in the presence of at least one protective agent. Various embodiments of the present disclosure also include methods for producing reduced graphene nanoribbons by reacting oxidized graphene nanoribbons with at least one reducing agent. Oxidized graphene nanoribbons, reduced graphene nanoribbons and compositions and articles derived therefrom are also disclosed herein.
摘要:
Methods for dissolving carbon materials such as, for example, graphite, graphite oxide, oxidized graphene nanoribbons and reduced graphene nanoribbons in a solvent containing at least one superacid are described herein. Both isotropic and liquid crystalline solutions can be produced, depending on the concentration of the carbon material The superacid solutions can be formed into articles such as, for example, fibers and films, mixed with other materials such as, for example, polymers, or used for functionalization of the carbon material. The superacid results in exfoliation of the carbon material to produce individual particles of the carbon material. In some embodiments, graphite or graphite oxide is dissolved in a solvent containing at least one superacid to form graphene or graphene oxide, which can be subsequently isolated. In some embodiments, liquid crystalline solutions of oxidized graphene nanoribbons in water are also described.