摘要:
The present disclosure relates to a microelectronic structure and the manufacture of the microelectronic structure. Specifically, the disclosure relates to an interconnect barrier layer between a rhodium contact structure and a copper interconnect structure in a microelectronic structure. The microelectronic structure provides for low resistance in microelectronic devices.
摘要:
The present disclosure relates to a microelectronic structure and the manufacture of the microelectronic structure. Specifically, the disclosure relates to an interconnect barrier layer between a rhodium contact structure and a copper interconnect structure in a microelectronic structure. The microelectronic structure provides for low resistance in microelectronic devices.
摘要:
A method to determine the cleanness of a semiconductor substrate and the quantity/density of pin holes that may exist within a patterned antireflective coating (ARC) is provided. Electroplating is employed to monitor the changes in the porosity of the ARC caused by the pin holes during solar cell manufacturing. In particular, electroplating a metal or metal alloy to form a metallic grid on an exposed front side surface of a substrate also fills the pin holes. The quantity/density of metallic filled pin holes (and hence the number of pin holes) in the patterned ARC can then be determined.
摘要:
A method of forming patterned metallization by electrodeposition under illumination without external voltage supply on a photovoltaic structure or on n-type region of a transistor/junction.
摘要:
The present disclosure relates to an improved method of providing a Ni silicide metal contact on a silicon surface by electrodepositing a Ni film on a silicon substrate. The improved method results in a controllable silicide formation wherein the silicide has a uniform thickness. The metal contacts may be incorporated in, for example, CMOS devices, MEM (micro-electro-mechanical) devices, and photovoltaic cells.
摘要:
A semiconductor device or a photovoltaic cell having a contact structure, which includes a silicon (Si) substrate; a metal alloy layer deposited on the silicon substrate; a metal silicide layer and a diffusion layer formed simultaneously from thermal annealing the metal alloy layer; and a metal layer deposited on the metal silicide and barrier layers.
摘要:
A method to determine the cleanness of a semiconductor substrate and the quantity/density of pin holes that may exist within a patterned antireflective coating (ARC) is provided. Electroplating is employed to monitor the changes in the porosity of the ARC caused by the pin holes during solar cell manufacturing. In particular, electroplating a metal or metal alloy to form a metallic grid on an exposed front side surface of a substrate also fills the pin holes. The quantity/density of metallic filled pin holes (and hence the number of pin holes) in the patterned ARC can then be determined.
摘要:
A method to determine the cleanness of a semiconductor substrate and the quantity/density of pin holes that may exist within a patterned antireflective coating (ARC) is provided. Electroplating is employed to monitor the changes in the porosity of the ARC caused by the pin holes during solar cell manufacturing. In particular, electroplating a metal or metal alloy to form a metallic grid on an exposed front side surface of a substrate also fills the pin holes. The quantity/density of metallic filled pin holes (and hence the number of pin holes) in the patterned ARC can then be determined.
摘要:
A method to determine the cleanness of a semiconductor substrate and the quantity/density of pin holes that may exist within a patterned antireflective coating (ARC) is provided. Electroplating is employed to monitor the changes in the porosity of the ARC caused by the pin holes during solar cell manufacturing. In particular, electroplating a metal or metal alloy to form a metallic grid on an exposed front side surface of a substrate also fills the pin holes. The quantity/density of metallic filled pin holes (and hence the number of pin holes) in the patterned ARC can then be determined.
摘要:
A semiconductor device or a photovoltaic cell having a contact structure, which includes a silicon (Si) substrate; a metal alloy layer deposited on the silicon substrate; a metal silicide layer and a diffusion layer formed simultaneously from thermal annealing the metal alloy layer; and a metal layer deposited on the metal silicide and barrier layers.