Abstract:
There is provided a phosphor powder which includes a wavelength converting material and a silica-based inorganic substance surrounding the wavelength converting material and represented by the following Formula 1, wherein a content of a hydrosilyl group (Si—H) is greater than or equal to 10 ppm by weight, based on the total weight of the silica-based inorganic substance: wherein X represents oxygen (O) or an amine group (NH), Y represents hydrogen (H), a hydroxyl group (OH), an amino group (NH2), or an alkyl group containing heteroelements, and the heteroelements include at least one selected from the group consisting of phosphorus (P), nitrogen (N), sulfur (S), oxygen (O), and a halogen element.
Abstract:
There are provided a coating composition having excellent visible light transmittance and photoluminescence properties, and a wavelength converting thin film prepared by using the same. The coating composition according to the present invention includes a solvent, polysilazane, and a wavelength converting agent, and has visible light transmittance of 50% or more with respect to an aqueous solution. According to the present invention, a wavelength converting thin film having excellent visible light transmittance and photoluminescence properties can be prepared.
Abstract:
Provided is a dye-sensitized upconversion nanophosphor including a core, a first shell surrounding at least part of the core, and an organic dye bonded to a surface of the nanophosphor to have an absorption band ranging from 650 nm to 850 nm and be excited in a near-infrared region to emit visible light.
Abstract:
Provided are a nanophosphor and a silica composite including the nanophosphor. The nanophosphor has a core/first shell/second shell structure or a core/first shell/second shell/third shell structure, wherein the core includes a Yb3+-doped fluoride-based nanoparticle, the first shell is an up-conversion shell including a Yb3+ and Tm3+-codoped fluoride-based crystalline composition, the second shell is a fluoride-based emission shell, and the third shell is an outermost crystalline shell.
Abstract:
The present invention relates to a method for preparing a hydrosilane using heteroatom-containing activated carbon, more particularly to a method for economically preparing a high-purity hydrosilane by redistribution of a chlorosilane using a heteroatom-containing activated carbon catalyst.
Abstract:
Disclosed are a functional reinforcing filler including inorganic particles surface-modified with an alkenylsilanol obtained by hydrolyzing an alkenylalkoxysilane compound, and a method for preparing the same. Since the disclosed functional reinforcing filler has a functional group having a double bond, it has good reactivity for styrene-butadiene rubber and sulfur. Thus, when used as a functional reinforcing filler in the manufacture of rubber, it allows improvement of physical properties through adjustment of the addition amount of sulfur without additional use of the coupling agent. In addition, because of superior hydrolysis reactivity, the problem of alcohol can be solved and a rubber mixture with long scorch time can be prepared. In particular, when the functional reinforcing filler of the present invention is used in the manufacture of tires, improvement in modulus, tensile strength, rotational resistance and wet traction performance can be expected.
Abstract:
The present invention relates to a solar cell having a wavelength converting layer formed of a polysilazane and a manufacturing method thereof to allow for low temperature sintering, to protect a wavelength converter from oxidation, degradation, and whitening, and thereby improve efficiency of the solar cell. The present invention provides for the solar cell including the wavelength converting layer which is formed by applying a coating solution containing a solvent, a polysilazane, and a wavelength converter onto a cell and an outer surface or inside of the cell, and then curing, and a manufacturing method of.