Abstract:
Provided is a time-of-flight mass spectrometer including: an ionization part receiving electron beams to thereby emit ions; a cold electron supply part injecting the electron beams to the ionization part; an ion detection part detecting the ions emitted from the ionization part; and an ion separation part connecting the ionization part and the ion detection part, wherein the cold electron supply part includes a microchannel plate receiving ultraviolet rays to thereby emit the electron beams, the ions emitted from the ionization part pass through the ion separation part to thereby reach the ion detection part, and the ion separation part has a straight tube shape.
Abstract:
An ion trap mass spectrometer is provided, including: an electron emitter; an ion trap storing ions generated by ionization resulting from an impact with electrons emitted from the electron emitter; a secondary ion filter for blocking out secondary ions generated due to ions selectively released by the ion trap; and a detector detecting ions selectively released from the ion trap, wherein the electron emitter, the ion trap, the secondary ion filter, and the ion detector are arranged on the same axis, so that a pure mass spectrum can be measured by excluding the secondary ions which are causes of background noise signals in the procedure of detection of the ions by the ion trap mass spectrometer.
Abstract:
Provided is a multiple frequency Radio Frequency (RF) amplifier. The multiple frequency RF amplifier includes a waveform generation circuit configured to generate an RF signal by amplitude and frequency-modulating a reference waveform signal, a drive amplifier circuit configured to drive-amplify the RF signal, and a power amplifier circuit configured to generate a multiple frequency RF voltage signal through a power amplification of the drive-amplified RF signal and output the multiple frequency RF voltage signal to an ion trap for a mass spectrometry.
Abstract:
The present invention relates to an electron bean injection control of a mass spectrometer. A mass spectrometer of the present invention includes: a reference waveform generator configured to generate a reference waveform signal having one type of a square wave and a sine wave, a waveform generator configured to generate a sync signal synchronized with the reference waveform signal; an RF module configured to generate an RF voltage signal from the reference waveform signal and apply the RF voltage signal to an RF electrode in the ion trap, an electron beam generator configured to control an operation of an ultraviolet (UV) diode for generating an electron beam injected into the ion trap according to an input control signal, and a control circuit configured to generate the control signal by using the square wave signal.
Abstract:
An ion trap mass spectrometer is provided, including: an electron emitter; an ion trap storing ions generated by ionization resulting from an impact with electrons emitted from the electron emitter; a secondary ion filter for blocking out secondary ions generated due to ions selectively released by the ion trap; and a detector detecting ions selectively released from the ion trap, wherein the electron emitter, the ion trap, the secondary ion filter, and the ion detector are arranged on the same axis, so that a pure mass spectrum can be measured by excluding the secondary ions which are causes of background noise signals in the procedure of detection of the ions by the ion trap mass spectrometer.