Abstract:
Disclosed is a display device integrated with a touch screen panel and a method for fabricating the same. The display includes: a TFT positioned at each pixel region; a first electrode spaced from one of a source electrode or a drain electrode of the TFT; a second electrode facing the first electrode; a TFT protective layer positioned on the TFT and has a first contact hole; a touch signal line positioned between a first touch connection pattern, which is made of the same material as the first electrode, and a second touch connection pattern made of the same material as the second electrode, and transfers a touch driving signal to the second touch connection pattern; a first connection pattern made of the same material as the second electrode; and a first electrode protective layer positioned on the first electrode and the touch signal line.
Abstract:
There is provided a display device. The display device includes an optical structure disposed to increase the amount of light emitted from a light-emitting diode; and a bank coupled with the optical structure.
Abstract:
The present disclosure relates to a display panel. More specifically, the display panel is configured to surround an opening area, includes a reflective electrode including an inclined surface, and therefore provides increased luminous efficiency.
Abstract:
Embodiments of the disclosure relate to a touch display device with enhanced light extraction efficiency, comprising an insulation film including a concave portion and a surrounding portion disposed around the concave portion, a first electrode disposed on the concave portion and a portion of the surrounding portion, a bank including a first portion disposed on the first electrode in an area corresponding to a portion of the concave portion and a second portion disposed on the insulation film and the first electrode in an area corresponding to the surrounding portion, an organic layer disposed on the first electrode exposed by the bank, the organic layer including a light emitting layer, a second electrode disposed on the organic layer and the bank, an encapsulation layer disposed on the second electrode, a touch buffer layer disposed on the encapsulation layer, a plurality of touch electrodes disposed on the touch buffer layer, and at least one light reflecting member disposed on the touch buffer layer and spaced apart from the plurality of touch electrodes.
Abstract:
A display panel and an organic light emitting display device with enhanced light extraction efficiency is described. The display panel and the display device include an insulating film including at least one concave portion, a first electrode disposed to cover the concave portion, a bank including a first part on the first electrode and overlapping a part of the flat portion of the concave portion, a second part extending from the first part and overlapping an inclined portion of the concave portion, and a third part extending from the second part and disposed on the side portion, an organic layer overlapping the concave portion, and a second electrode on the organic layer and the bank. A width of the first part of the bank is wider than a width of the second part of the bank. Thus, it is possible to provide a display device with enhanced light extraction efficiency.
Abstract:
A display panel and an organic light emitting display device with enhanced light extraction efficiency is described. The display panel and the display device include an insulating film including at least one concave portion, a first electrode disposed to cover the concave portion, a bank including a first part on the first electrode and overlapping a part of the flat portion of the concave portion, a second part extending from the first part and overlapping an inclined portion of the concave portion, and a third part extending from the second part and disposed on the side portion, an organic layer overlapping the concave portion, and a second electrode on the organic layer and the bank. A width of the first part of the bank is wider than a width of the second part of the bank. Thus, it is possible to provide a display device with enhanced light extraction efficiency.
Abstract:
A display panel and an organic light emitting display device with enhanced light extraction efficiency is described. The display panel and the display device include an insulating film including at least one concave portion, a first electrode disposed to cover the concave portion, a bank including a first part on the first electrode and overlapping a part of the flat portion of the concave portion, a second part extending from the first part and overlapping an inclined portion of the concave portion, and a third part extending from the second part and disposed on the side portion, an organic layer overlapping the concave portion, and a second electrode on the organic layer and the bank. A width of the first part of the bank is wider than a width of the second part of the bank. Thus, it is possible to provide a display device with enhanced light extraction efficiency.
Abstract:
A method of fabricating a thin film transistor array substrate is disclosed. The method includes: sequentially forming a first passivation layer, a photo acryl layer and a first transparent metal layer on the substrate provided with the source/drain electrodes and so on; forming a common electrode, which is disposed in the pixel region, and first through third contact holes, which are positioned in regions of the drain electrode, the gate pad and the data pad, respectively, using one of a half-tone mask and a diffractive mask; forming a second passivation layer on the substrate provided with the first through third contact holes; exposing the drain electrode, the gate pad and the data pad by removing the first and second passivation layers from the drain electrode region, the gate pad region and data pad region; and forming a pixel electrode on the second passivation layer opposite to the common electrode by forming a second transparent metal layer on the substrate and performing a third mask procedure for the second transparent metal layer.
Abstract:
A display device, such an organic light emitting display device is disclosed. The display device includes an insulating film including a concave portion in an area of at least one subpixel, a first electrode on a side portion of the concave portion and on the concave portion in an area of the subpixel, an organic layer overlapping the concave portion and on the first electrode. An organic layer disposed in the at least one blue subpixel may include at least one of a first light emitting dopant with a maximum emission wavelength of 457 nm or less, a second light emitting dopant with a full width at half maximum (FWHM) of 30 nm or less, and/or a third light emitting dopant with the maximum emission wavelength of 457 nm or less and the full width at half maximum of 30 nm or less. Thus, a display device with enhanced light extraction efficiency is provided.
Abstract:
Embodiments of the disclosure relate to a touch display device with enhanced light extraction efficiency, comprising an insulation film including a concave portion and a surrounding portion disposed around the concave portion, a first electrode disposed on the concave portion and a portion of the surrounding portion, a bank including a first portion disposed on the first electrode in an area corresponding to a portion of the concave portion and a second portion disposed on the insulation film and the first electrode in an area corresponding to the surrounding portion, an organic layer disposed on the first electrode exposed by the bank, the organic layer including a light emitting layer, a second electrode disposed on the organic layer and the bank, an encapsulation layer disposed on the second electrode, a touch buffer layer disposed on the encapsulation layer, a plurality of touch electrodes disposed on the touch buffer layer, and at least one light reflecting member disposed on the touch buffer layer and spaced apart from the plurality of touch electrodes.