Abstract:
Methods and systems for split voltage domain transmitter circuits are disclosed and may include a two-branch output stage including a plurality of CMOS transistors, each branch of the two-branch output stage comprising two stacked CMOS inverter pairs from among the plurality of CMOS transistors; the two stacked CMOS inverter pairs of a given branch being configured to drive a respective load, in phase opposition to the other branch; and a pre-driver circuit configured to receive a differential modulating signal and output, to respective inputs of the two stacked CMOS inverters, two synchronous differential voltage drive signals having a swing of half the supply voltage and being DC-shifted by half of the supply voltage with respect to each other. The load may include a series of diodes that are driven in differential mode via the drive signals. An optical signal may be modulated via the diodes.
Abstract:
Methods and systems for a distributed optoelectronic receiver are disclosed and may include an optoelectronic receiver having a grating coupler, a splitter, a plurality of photodiodes, and a plurality of transimpedance amplifiers (TIAs). The receiver receives a modulated optical signal utilizing the grating coupler, splits the received signal into a plurality of optical signals, generates a plurality of electrical signals from the plurality of optical signals utilizing the plurality of photodiodes, communicates the plurality of electrical signals to the plurality of TIAs, amplifies the plurality of electrical signals utilizing the plurality of TIAs, and generates an output electrical signal from coupled outputs of the plurality of TIAs. Each TIA may be configured to amplify signals in a different frequency range. One of the plurality of electrical signals may be DC coupled to a low frequency TIA of the plurality of TIAs.
Abstract:
Methods and systems for partial integration of wavelength division multiplexing and bi-directional solutions are disclosed and may include, an optical transceiver on a silicon photonics integrated circuit coupled to a planar lightwave circuit (PLC). The silicon photonics integrated circuit may include a first modulator and first light source that operates at a first wavelength and a second modulator and second light source that operates at a second wavelength. The transceiver and PLC are operable to modulate a first continuous wave (CW) optical signal from the first light source utilizing the first modulator and modulate a second CW optical signal from the second light source utilizing the second modulator. The modulated signals may be communicated from the modulators to the PLC utilizing a first pair of grating couplers in the IC and combined in the PLC.
Abstract:
Methods and systems for a distributed optical transmitter with local domain splitting is disclosed and may include, in an optical modulator integrated in a silicon photonics chip: receiving electrical signals, communicating the electrical signals to domain splitters along a length of waveguides of the optical modulator utilizing one or more delay lines, generating electrical signals in voltage domains utilizing the domain splitters, modulating received optical signals in the waveguides of the optical modulator by driving diodes with the electrical signals generated in the voltage domains, and generating a modulated output signal through interference of the modulated optical signal in the waveguides of the optical modulator. The delay lines may comprise one delay element per domain splitter, or may comprise a delay element per domain splitter for a first subset of the domain splitters and more than one delay element per domain splitter for a second subset of the domain splitters.
Abstract:
A method and system is provided for cassette based wavelength division multiplexing and may include an optical system with an aggregating cassette. The optical system may include optical transceivers, with each generating optical signals at a different wavelength. The aggregating cassette may include one or more multiplexers coupled to each of the optical transceivers via optical fibers. The optical transceivers may generate modulated optical signals at one of the different wavelengths. The optical fibers may communicate one of the modulated optical signals from each of the optical transceivers to the one or more multiplexers. The modulated optical signals may be multiplexed to one or more output optical fibers. The multiplexed signals may be communicated to one or more receiving demultiplexers using the one or more output optical fibers. The one or more demultiplexers may demultiplex said multiplexed signals into separate wavelength signals.
Abstract:
Methods and systems for split voltage domain receiver circuits are disclosed and may comprise amplifying received electrical signals in a plurality of partial voltage domains, and combining the amplified received signals, utilizing a stacked cascode amplifier for each partial voltage domain, into a single differential signal in a single voltage domain. The stacked cascode amplifiers may comprise a feedback loop having a comparator which controls a current source in each domain. The signals may be received from a photodiode, which may be integrated in the integrated circuit. The amplified signals may be combined via stacked common source or common emitter amplifiers. The received signals via may be amplified by stacked inverters. The amplified received signals may be AC or DC coupled prior to the combining. The received electrical signals may be amplified and combined via cascode amplifiers. The voltage domains may be stacked and may be controlled by feedback loops.
Abstract:
Methods and systems for split voltage domain receiver circuits are disclosed and may comprise amplifying complementary received signals in a plurality of partial voltage domains, and combining the amplified received signals, utilizing a stacked cascode amplifier for each domain, into a single differential signal in a single voltage domain. The stacked cascode amplifiers may comprise a feedback loop having a comparator which controls a current source in each domain. The complementary signals may be received from a photodiode, which may be integrated in the integrated circuit. The amplified received signals may be combined via stacked common source or common emitter amplifiers. The received signals via may be amplified by stacked inverters. The amplified received signals may be AC or DC coupled prior to the combining. The complementary received signals may be amplified and combined via cascode amplifiers. The voltage domains may be stacked and may be controlled by feedback loops.
Abstract:
Methods and systems for a photonically enabled complementary metal-oxide semiconductor (CMOS) chip are disclosed and may comprise in an integrated circuit comprising a driver: amplifying a received signal in a plurality of partial voltage domains, and generating the partial voltage domains in a domain splitter in the driver. A voltage domain boundary value between two partial voltage domains may be controlled utilizing a differential amplifier that samples an output voltage of a cascade amplifier that is an input to the driver and controls a current supplying said cascade amplifier. A series of diodes may be driven in differential mode via the amplified signals. An optical signal may be modulated via the diodes, which may be integrated in a Mach-Zehnder modulator or a ring modulator. The diodes may be connected in a distributed configuration. The amplified signals may be communicated to the diodes via transmission lines, which may be even-mode coupled.
Abstract:
A system for a feedback amplifier with sub-40khz low-frequency cutoff is disclosed and may include amplifying electrical signals received via coupling capacitors utilizing an amplifier having feedback paths comprising source followers and feedback resistors. Gate terminals of the source followers may be coupled to output terminals of the amplifier circuit. The feedback paths may be coupled prior to the coupling capacitors at inputs of the amplifier circuit. Voltages may be level shifted prior to the coupling capacitors to ensure stable bias conditions for the amplifier circuit. The amplifier circuit may be integrated in a CMOS photonics chip with the source followers comprising CMOS transistors. The amplifier circuit may receive current-mode logic or voltage signals. The electrical signals may be received from a photodetector, which may comprise a silicon germanium photodiode differentially coupled to the amplifier circuit. Optical signals for the photodetector in the chip may be received via optical fibers.
Abstract:
A method and system is provided for cassette based wavelength division multiplexing and may include an optical system with an aggregating cassette. The optical system may include optical transceivers, with each generating optical signals at a different wavelength. The aggregating cassette may include one or more multiplexers coupled to each of the optical transceivers via optical fibers. The optical transceivers may generate modulated optical signals at one of the different wavelengths. The optical fibers may communicate one of the modulated optical signals from each of the optical transceivers to the one or more multiplexers. The modulated optical signals may be multiplexed to one or more output optical fibers. The multiplexed signals may be communicated to one or more receiving demultiplexers using the one or more output optical fibers. The one or more demultiplexers may demultiplex the multiplexed signals into separate wavelength signals.