Abstract:
A signal processing system includes an analog-to-digital converter (ADC) that is used to convert a first analog value into a first digital value and convert a second analog value into a second digital value. The ADC includes a first digital-to-analog converter (DAC) circuit and a second DAC circuit operating in different voltage domains. A first bit segment and a second bit segment of each digital value are determined via the first DAC circuit and the second DAC circuit, respectively. An analog injection value is injected to the second analog value, the analog injection value is converted from a digital injection value formed by a subset of bits of the second bit segment of the first digital value, and the second bit segment of the second digital value is derived from injecting the digital injection value to a digital value determined by the second DAC circuit.
Abstract:
A comparison circuit is provided and includes first and second comparators and a first time-to-digital comparator. The first comparator with a first offset voltage receives an input signal and generates a first comparison signal and a first inverse comparison signal. The second comparator receives the input signal and generates a second comparison signal and a second inverse comparison signal. The first offset voltage is larger than the second offset voltage. The first time-to-digital comparator receives the first comparison signal and the second inverse comparison signal and generates first and second determination signals according to the first comparison signal and the second inverse comparison signal. The first and second determination signals indicate whether a voltage of the input signal is larger than a first middle voltage. The first middle voltage is equal to a half of the sum of the first offset voltage and the second offset voltage.
Abstract:
An incremental analog-to-digital converter (ADC) with high accuracy. The incremental ADC has a delta-sigma modulator, performing delta-sigma modulation on an analog input signal to output a quantized signal, and a digital filter, receiving the quantized signal to generate a digital representation of the analog input signal. A loop filter of the delta-sigma modulator has a preset circuit. In the preset circuit, the output terminal of the loop filter is preset rather than being reset during the reset phase of the incremental ADC.
Abstract:
The invention provides a system for conversion between analog domain and digital domain with mismatch error shaping, including a DAC, a first injection circuit coupled to the DAC, and a second injection circuit coupled to the DAC. The DAC generates a first analog value in response to a first digital value, and generates a second analog value in response to a second digital value. The first injection circuit enables an analog injection value to be injected to the second analog value when the DAC generates the second analog value, wherein the analog injection value is converted from a digital injection value formed by a subset of bits of the first digital value. The second injection circuit injects the digital injection value to the second digital value, or combines the digital injection value and a related value obtained according to the second analog value.
Abstract:
An offset adjustment circuit of a dynamic comparator has a detection unit and a control unit. The detection unit detects whether a comparator offset possessed by the dynamic comparator is deviated from a target offset setting, and accordingly generates a detection result. The control unit adjusts a voltage setting of at least one input received by the dynamic comparator when the detection result indicates that the comparator offset is deviated from the target offset setting.
Abstract:
An offset adjustment circuit of a dynamic comparator has a detection unit and a control unit. The detection unit detects whether a comparator offset possessed by the dynamic comparator is deviated from a target offset setting, and accordingly generates a detection result. The control unit adjusts a voltage setting of at least one input received by the dynamic comparator when the detection result indicates that the comparator offset is deviated from the target offset setting.
Abstract:
A delta-sigma analog-to-digital converter (ΔΣ ADC) has a delta-sigma modulator, a decimation filter and an error suppression circuit. The delta-sigma modulator receives an analog input, and converts the analog input into a first digital output. The decimation filter is coupled to the delta-sigma modulator, and generates a second digital output according to the first digital output. The error suppression circuit is coupled to the decimation filter, and receives an error input and injects an error output into the second digital output according to the error input.
Abstract:
An electronic device has a transmit circuit and a processing circuit. The processing circuit outputs a first portion of compressive sensing (CS) samples corresponding to a signal segment to another electronic device via the transmit circuit, and selectively outputs a second portion of the CS samples corresponding to the signal segment to another electronic device via the transmit circuit according to a response of another electronic device. In this way, a balance between the compression ratio and the reconstruction quality/speed can be achieved. Moreover, the signal reconstruction performed at the processing circuit may employ a multi-resolution/multi-scale reconstruction scheme to achieve a balance between the dictionary size and the reconstruction quality/speed, and/or may employ a multi-stage reconstruction scheme to achieve a balance between the reconstruction algorithm control setting and the reconstruction quality/speed. In addition, dictionary weighting, online dictionary update, and/or point constraints may be used to improve the reconstruction quality.
Abstract:
The invention provides a system for conversion between analog domain and digital domain with mismatch error shaping, including a DAC, a first injection circuit coupled to the DAC, and a second injection circuit coupled to the DAC. The DAC generates a first analog value in response to a first digital value, and generates a second analog value in response to a second digital value. The first injection circuit enables an analog injection value to be injected to the second analog value when the DAC generates the second analog value, wherein the analog injection value is converted from a digital injection value formed by a subset of bits of the first digital value. The second injection circuit injects the digital injection value to the second digital value, or combines the digital injection value and a related value obtained according to the second analog value.
Abstract:
The invention provides a system for conversion between analog domain and digital domain with mismatch error shaping, including a DAC, a first injection circuit coupled to the DAC, and a second injection circuit coupled to the DAC. The DAC generates a first analog value in response to a first digital value, and generates a second analog value in response to a second digital value. The first injection circuit enables an analog injection value to be injected to the second analog value when the DAC generates the second analog value, wherein the analog injection value is converted from a digital injection value formed by a subset of bits of the first digital value. The second injection circuit injects the digital injection value to the second digital value, or combines the digital injection value and a related value obtained according to the second analog value.