Abstract:
Semiconductor devices having interconnects incorporating negative expansion (NTE) materials are disclosed herein. In one embodiment a semiconductor device includes a substrate having an opening that extends at least partially through the substrate. A conductive material having a positive coefficient of thermal expansion (CTE) partially fills the opening. A negative thermal expansion (NTE) having a negative CTE also partially fills the opening. In one embodiment, the conductive material includes copper and the NTE material includes zirconium tungstate.
Abstract:
Apparatuses and methods are disclosed herein for densification of through substrate insulating liners. An example method may include forming a through substrate via through at least a portion of a substrate, forming a first liner layer in the through substrate via, and densifying the first liner layer. The example method may further include forming a second liner layer on the first liner layer, and densifying the second liner layer.
Abstract:
Some embodiments include semiconductor constructions having first and second electrically conductive lines that intersect with one another at an intersection. The first line has primarily a first width, and has narrowed regions directly against the second line and on opposing sides of the second line from one another. Electrically conductive contacts are along the first line and directly electrically coupled to the first line, and one of the electrically conductive contacts is directly against the intersection. Some embodiments include methods of forming intersecting lines of material. First and second trenches are formed, and intersect with one another at an intersection. The first trench has primarily a first width, and has narrowed regions directly against the second trench and on opposing sides of the second trench from one another. Material is deposited within the first and second trenches to substantially entirely fill the first and second trenches.
Abstract:
Semiconductor devices having interconnects incorporating negative expansion (NTE) materials are disclosed herein. In one embodiment a semiconductor device includes a substrate having an opening that extends at least partially through the substrate. A conductive material having a positive coefficient of thermal expansion (CTE) partially fills the opening. A negative thermal expansion (NTE) having a negative CTE also partially fills the opening. In one embodiment, the conductive material includes copper and the NTE material includes zirconium tungstate.
Abstract:
Semiconductor device interconnect structures having low capacitance and associated systems and methods are disclosed herein. In one embodiment, a method of manufacturing an interconnect structure includes forming an opening in a surface of a semiconductor device and forming an interconnect structure at least within the opening. Forming the interconnect structure includes depositing a first insulator material on both the surface and a sidewall of the opening, selectively removing a first portion of the first insulator material on the surface over a second portion of the first insulator material on the sidewall, depositing a second insulator material on the second portion, and depositing a conductive material on the second insulator material. The method further includes selecting the thickness of the first and second insulators materials based on a threshold level of capacitance between the sidewall and the conductive material.
Abstract:
Semiconductor device interconnect structures having low capacitance and associated systems and methods are disclosed herein. In one embodiment, a method of manufacturing an interconnect structure includes forming an opening in a surface of a semiconductor device and forming an interconnect structure at least within the opening. Forming the interconnect structure includes depositing a first insulator material on both the surface and a sidewall of the opening, selectively removing a first portion of the first insulator material on the surface over a second portion of the first insulator material on the sidewall, depositing a second insulator material on the second portion, and depositing a conductive material on the second insulator material. The method further includes selecting the thickness of the first and second insulators materials based on a threshold level of capacitance between the sidewall and the conductive material.
Abstract:
Some embodiments include semiconductor constructions having first and second electrically conductive lines that intersect with one another at an intersection. The first line has primarily a first width, and has narrowed regions directly against the second line and on opposing sides of the second line from one another. Electrically conductive contacts are along the first line and directly electrically coupled to the first line, and one of the electrically conductive contacts is directly against the intersection. Some embodiments include methods of forming intersecting lines of material. First and second trenches are formed, and intersect with one another at an intersection. The first trench has primarily a first width, and has narrowed regions directly against the second trench and on opposing sides of the second trench from one another. Material is deposited within the first and second trenches to substantially entirely fill the first and second trenches.
Abstract:
Semiconductor devices having interconnects incorporating negative expansion (NTE) materials are disclosed herein. In one embodiment a semiconductor device includes a substrate having an opening that extends at least partially through the substrate. A conductive material having a positive coefficient of thermal expansion (CTE) partially fills the opening. A negative thermal expansion (NTE) having a negative CTE also partially fills the opening. In one embodiment, the conductive material includes copper and the NTE material includes zirconium tungstate.
Abstract:
Semiconductor device interconnect structures having low capacitance and associated systems and methods are disclosed herein. In one embodiment, a method of manufacturing an interconnect structure includes forming an opening in a surface of a semiconductor device and forming an interconnect structure at least within the opening. Forming the interconnect structure includes depositing a first insulator material on both the surface and a sidewall of the opening, selectively removing a first portion of the first insulator material on the surface over a second portion of the first insulator material on the sidewall, depositing a second insulator material on the second portion, and depositing a conductive material on the second insulator material. The method further includes selecting the thickness of the first and second insulators materials based on a threshold level of capacitance between the sidewall and the conductive material.
Abstract:
Semiconductor device interconnect structures having low capacitance and associated systems and methods are disclosed herein. In one embodiment, a method of manufacturing an interconnect structure includes forming an opening in a surface of a semiconductor device and forming an interconnect structure at least within the opening. Forming the interconnect structure includes depositing a first insulator material on both the surface and a sidewall of the opening, selectively removing a first portion of the first insulator material on the surface over a second portion of the first insulator material on the sidewall, depositing a second insulator material on the second portion, and depositing a conductive material on the second insulator material. The method further includes selecting the thickness of the first and second insulators materials based on a threshold level of capacitance between the sidewall and the conductive material.