Abstract:
A method of forming an array comprising using two different composition masking materials in forming a pattern of spaced repeating first features of substantially same size and substantially same shape relative one another. A pattern-interrupting second feature of at least one of different size or different shape compared to that of the first features is within and interrupts the pattern of first features. The pattern of the first features with the pattern-interrupting second feature are translated into lower substrate material that is below the first features and the pattern-interrupting second feature. Material of the first features and of the pattern-interrupting second feature that is above the lower substrate material is removed at least one of during or after the translating. After the removing, the pattern-interrupting second feature in the lower substrate material is used as a reference location to reckon which of the two different composition masking materials was used to make first spaces between the first features in an analysis area in the material that was above the lower substrate material or which of the two different composition masking materials was used to make second spaces between the first features in the analysis area that alternate with the first spaces. Structure independent of method is disclosed.
Abstract:
A method of forming an array comprising using two different composition masking materials in forming a pattern of spaced repeating first features of substantially same size and substantially same shape relative one another. A pattern-interrupting second feature of at least one of different size or different shape compared to that of the first features is within and interrupts the pattern of first features. The pattern of the first features with the pattern-interrupting second feature are translated into lower substrate material that is below the first features and the pattern-interrupting second feature. Material of the first features and of the pattern-interrupting second feature that is above the lower substrate material is removed at least one of during or after the translating. After the removing, the pattern-interrupting second feature in the lower substrate material is used as a reference location to reckon which of the two different composition masking materials was used to make first spaces between the first features in an analysis area in the material that was above the lower substrate material or which of the two different composition masking materials was used to make second spaces between the first features in the analysis area that alternate with the first spaces. Structure independent of method is disclosed.
Abstract:
Methods for etching metal nitrides and metal oxides include using ultradilute HF solutions and buffered, low-pH HF solutions containing a minimal amount of the hydrofluoric acid species H2F2. The etchant can be used to selectively remove metal nitride layers relative to doped or undoped oxides, tungsten, polysilicon, and titanium nitride. A method is provided for producing an isolated capacitor, which can be used in a dynamic random access memory cell array, on a substrate using sacrificial layers selectively removed to expose outer surfaces of the bottom electrode.
Abstract translation:用于蚀刻金属氮化物和金属氧化物的方法包括使用超稀释HF溶液和含有最少量的氢氟酸物质H 2 F 2的缓冲的低pH HF溶液。 蚀刻剂可用于相对于掺杂或未掺杂的氧化物,钨,多晶硅和氮化钛选择性地除去金属氮化物层。 提供了一种用于在衬底上产生可用于动态随机存取存储器单元阵列中的隔离电容器的方法,该牺牲层选择性地去除以暴露底部电极的外表面。
Abstract:
A method of forming an array comprising using two different composition masking materials in forming a pattern of spaced repeating first features of substantially same size and substantially same shape relative one another. A pattern-interrupting second feature of at least one of different size or different shape compared to that of the first features is within and interrupts the pattern of first features. The pattern of the first features with the pattern-interrupting second feature are translated into lower substrate material that is below the first features and the pattern-interrupting second feature. Material of the first features and of the pattern-interrupting second feature that is above the lower substrate material is removed at least one of during or after the translating. After the removing, the pattern-interrupting second feature in the lower substrate material is used as a reference location to reckon which of the two different composition masking materials was used to make first spaces between the first features in an analysis area in the material that was above the lower substrate material or which of the two different composition masking materials was used to make second spaces between the first features in the analysis area that alternate with the first spaces. Structure independent of method is disclosed.
Abstract:
A method of forming an array comprising using two different composition masking materials in forming a pattern of spaced repeating first features of substantially same size and substantially same shape relative one another. A pattern-interrupting second feature of at least one of different size or different shape compared to that of the first features is within and interrupts the pattern of first features. The pattern of the first features with the pattern-interrupting second feature are translated into lower substrate material that is below the first features and the pattern-interrupting second feature. Material of the first features and of the pattern-interrupting second feature that is above the lower substrate material is removed at least one of during or after the translating. After the removing, the pattern-interrupting second feature in the lower substrate material is used as a reference location to reckon which of the two different composition masking materials was used to make first spaces between the first features in an analysis area in the material that was above the lower substrate material or which of the two different composition masking materials was used to make second spaces between the first features in the analysis area that alternate with the first spaces. Structure independent of method is disclosed.
Abstract:
A method of forming capacitors includes providing a support material over a substrate. The support material is at least one of semiconductive or conductive. Openings are formed into the support material. The openings include at least one of semiconductive or conductive sidewalls. An insulator is deposited along the semiconductive and/or conductive opening sidewalls. A pair of capacitor electrodes having capacitor dielectric there-between is formed within the respective openings laterally inward of the deposited insulator. One of the pair of capacitor electrodes within the respective openings is laterally adjacent the deposited insulator. Other aspects are disclosed, including integrated circuitry independent of method of manufacture.
Abstract:
A method of forming a pattern on a substrate includes forming spaced first material-comprising pillars projecting elevationally outward of first openings formed in second material. Sidewall spacers are formed over sidewalls of the first material-comprising pillars. The sidewall spacers form interstitial spaces laterally outward of the first material-comprising pillars. The interstitial spaces are individually surrounded by longitudinally-contacting sidewall spacers that are over sidewalls of four of the first material-comprising pillars.
Abstract:
Methods for etching metal nitrides and metal oxides include using ultradilute HF solutions and buffered, low-pH HF solutions containing a minimal amount of the hydrofluoric acid species H2F2. The etchant can be used to selectively remove metal nitride layers relative to doped or undoped oxides, tungsten, polysilicon, and titanium nitride. A method is provided for producing an isolated capacitor, which can be used in a dynamic random access memory cell array, on a substrate using sacrificial layers selectively removed to expose outer surfaces of the bottom electrode.
Abstract translation:用于蚀刻金属氮化物和金属氧化物的方法包括使用超稀释HF溶液和含有最少量的氢氟酸物质H 2 F 2的缓冲的低pH HF溶液。 蚀刻剂可用于相对于掺杂或未掺杂的氧化物,钨,多晶硅和氮化钛选择性地除去金属氮化物层。 提供了一种用于在衬底上产生可用于动态随机存取存储器单元阵列中的隔离电容器的方法,该牺牲层选择性地去除以暴露底部电极的外表面。
Abstract:
The invention includes methods for selectively etching insulative material supports relative to conductive material. The invention can include methods for selectively etching silicon nitride relative to metal nitride. The metal nitride can be in the form of containers over a semiconductor substrate, with such containers having upwardly-extending openings with lateral widths of less than or equal to about 4000 angstroms; and the silicon nitride can be in the form of a layer extending between the containers. The selective etching can comprise exposure of at least some of the silicon nitride and the containers to Cl2 to remove the exposed silicon nitride, while not removing at least the majority of the metal nitride from the containers. In subsequent processing, the containers can be incorporated into capacitors.
Abstract:
The invention includes methods for selectively etching insulative material supports relative to conductive material. The invention can include methods for selectively etching silicon nitride relative to metal nitride. The metal nitride can be in the form of containers over a semiconductor substrate, with such containers having upwardly-extending openings with lateral widths of less than or equal to about 4000 angstroms; and the silicon nitride can be in the form of a layer extending between the containers. The selective etching can comprise exposure of at least some of the silicon nitride and the containers to Cl2 to remove the exposed silicon nitride, while not removing at least the majority of the metal nitride from the containers. In subsequent processing, the containers can be incorporated into capacitors.