Abstract:
An implantable medical device housing has an outer surface and an inner surface that defines an interior cavity. A wire is coupled to the housing outer surface. The wire wholly defines an open aperture for receiving a fixation member. The wire includes a first wire end, a second wire end, and an annular loop between the first and second ends. A cover extends over at least the first end and the second end of the wire.
Abstract:
An implantable medical device includes two conductive enclosures that are attached together, wherein the first enclosure contains electronics, and the second enclosure contains a power source. The second enclosure, all or a portion of which is located outside the first enclosure, includes an inner layer, an outer layer, and a header plate, all of which are configured to provide redundant sealing for the power source. The inner and outer layers, formed by separate metal sheets nested one within the other, are preferably in direct mechanical and electrical contact. The first sheet, which forms the inner layer, approximately conforms to a profile of the power source, located therein, and the second sheet, which forms the outer layer, conforms to a profile of the first sheet. An insulative housing, which contains connector contacts of the device, is directly secured to the first and second conductive enclosures, for example, by mounting brackets.
Abstract:
An implantable device system for delivering electrical stimulation pulses to a patient's body includes a pulse delivery device having a piezoelectric element that is enclosed by a housing and produces voltage signals delivered to the patient's body in response to receiving ultrasound energy. The pulse delivery device includes a circuit having a rate limiter configured to filter voltage signals produced by the piezoelectric element a rate faster than a maximum stimulation rate.
Abstract:
An implantable medical device system is configured to deliver cardiac pacing by receiving a cardiac electrical signal by sensing circuitry of a first device via a plurality of sensing electrodes, identifying by a control module of the first device a first cardiac event from the cardiac electrical signal, setting a first pacing interval in response to identifying the first cardiac event, controlling a power transmitter of the first device to transmit power upon expiration of the first pacing interval, receiving the transmitted power by a power receiver of a second device; and delivering at least a portion of the received power to a patient's heart via a first pacing electrode pair of the second device coupled to the power receiver.
Abstract:
An implantable device system for delivering electrical stimulation pulses to a patient's body includes a pulse delivery device having a piezoelectric element that is enclosed by a housing and produces voltage signals delivered to the patient's body in response to receiving ultrasound energy. The pulse delivery device includes a circuit having a rate limiter configured to filter voltage signals produced by the piezoelectric element a rate faster than a maximum stimulation rate.
Abstract:
An implantable medical device connector assembly and method of manufacture include a molded, insulative shell having an inner surface forming a connector bore, a circuit member including one or more traces extending through apertures in the connector shell. One or more conductive members, positioned along the connector bore, are electrically coupled to the traces. The sealing members are positioned between the conductive members.
Abstract:
Various embodiments of a sealed package and method of forming such package are disclosed. The package can include a housing having an inner surface and an outer surface, and a substrate having a first major surface and a second major surface. The package can also include an electronic device disposed on the first major surface of the substrate, and a power source disposed at least partially within the housing. The substrate can be sealed to the housing such that a non-bonded electrical connection is formed between a device contact of the electronic device and a power source contact of the power source.
Abstract:
Implantable medical device systems of the present disclosure may include a subcutaneous implantable cardioverter defibrillator (SICD) that is powered by a multi-cell power source that is connected to a transformer and power conversion circuitry to charge one or more relatively small, but powerful, high voltage capacitors to provide a relatively high discharge voltage. The SICD includes electrical isolation for the multi-cell power source to protect against cross-charging between the cells during the operational lifetime of the SICD.
Abstract:
An implantable medical device connector assembly and method of manufacture include a molded, insulative shell having an inner surface forming a connector bore, a circuit member including one or more traces extending through apertures in the connector shell. One or more conductive members, positioned along the connector bore, are electrically coupled to the traces. The sealing members are positioned between the conductive members.
Abstract:
A complex connector and component within an implantable medical device in which the complex connector is positioned within the spacing footprint of the component to optimize packaging within the device.