Magnetic recording media used in a high-density hard disk drive
    4.
    发明授权
    Magnetic recording media used in a high-density hard disk drive 失效
    用于高密度硬盘驱动器的磁记录介质

    公开(公告)号:US5981018A

    公开(公告)日:1999-11-09

    申请号:US78311

    申请日:1998-05-13

    IPC分类号: C23C14/16 G11B5/73 B32B3/02

    摘要: The present invention relates to high-coercivity magnetic recording media used in a hard disk drive. The magnetic recording medium comprises a nonmagnetic substrate, a seed layer comprising NiAl alloy sputtered onto the substrate, a sublayer comprising CrV alloy sputtered onto the seed layer, a magnetic layer comprising CoCrPtTaNb alloy sputtered onto the sublayer, and a carbon overcoat sputtered onto the magnetic layer. The magnetic recording medium of such a structure has improved signal-to-noise ratio, coercivity, overwrite capability, and orientation ratio thereby greatly improving the storage density and read/write capacity of the magnetic recording medium. Furthermore, the coercivity of the magnetic layer of CoCrPtTaNb alloy according to the present invention can be as high as 4000 Oersteds even without the use of the NiAl seed layer.

    摘要翻译: 本发明涉及硬盘驱动器中使用的高矫顽力磁记录介质。 磁记录介质包括非磁性基底,溅射在基底上的包含NiAl合金的晶种层,溅射到种子层上的CrV合金的子层,溅射到子层上的CoCrPtTaNb合金的磁性层和溅射到磁层上的碳外涂层 层。 这种结构的磁记录介质具有提高的信噪比,矫顽力,重写能力和取向比,从而大大提高了磁记录介质的存储密度和读/写能力。 此外,即使不使用NiAl种子层,根据本发明的CoCrPtTaNb合金的磁性层的矫顽力也可以高达4000奥斯特。

    Schottky diode with high antistatic capability
    5.
    发明授权
    Schottky diode with high antistatic capability 有权
    具有高抗静电能力的肖特基二极管

    公开(公告)号:US08421179B2

    公开(公告)日:2013-04-16

    申请号:US13186494

    申请日:2011-07-20

    IPC分类号: H01L29/872

    CPC分类号: H01L29/872 H01L29/8611

    摘要: A Schottky diode with high antistatic capability has an N− type doped drift layer formed on an N+ type doped layer. The N− type doped drift layer has a surface formed with a protection ring. Inside the protection ring is a P-type doped area. The N− type doped drift layer surface is further formed with an oxide layer and a metal layer. The contact region between the metal layer and the N− type doped drift layer and the P-type doped area forms a Schottky contact. The P-type doped area has a low-concentration lower layer and a high-concentration upper layer, so that the surface ion concentration is high in the P-type doped area. The Schottky diode thus has such advantages of lowered forward voltage drop and high antistatic capability.

    摘要翻译: 具有高抗静电能力的肖特基二极管具有形成在N +型掺杂层上的N型掺杂漂移层。 N型掺杂漂移层具有形成有保护环的表面。 保护环内部是P型掺杂区域。 N型掺杂漂移层表面还形成有氧化物层和金属层。 金属层和N型掺杂漂移层和P型掺杂区域之间的接触区域形成肖特基接触。 P型掺杂区域具有低浓度下层和高浓度上层,使得P型掺杂区域中的表面离子浓度高。 因此,肖特基二极管具有降低正向压降和高抗静电能力的优点。

    Schottky diode with low reverse leakage current and low forward voltage drop
    6.
    发明申请
    Schottky diode with low reverse leakage current and low forward voltage drop 审中-公开
    肖特基二极管具有低反向漏电流和低正向压降

    公开(公告)号:US20110163408A1

    公开(公告)日:2011-07-07

    申请号:US12655698

    申请日:2010-01-06

    IPC分类号: H01L29/872 H01L29/06

    CPC分类号: H01L29/872 H01L29/0692

    摘要: A Schottky diode structure with low reverse leakage current and low forward voltage drop has a first conductive material semiconductor substrate combined with a metal layer. An oxide layer is formed around the edge of the combined conductive material semiconductor substrate and the metal layer. A plurality of dot-shaped or line-shaped second conductive material regions are formed on the surface of the first conductive material semiconductor substrate connecting to the metal layer. The second conductive material regions form depletion regions in the first conductive material semiconductor substrate. The depletion regions can reduce the leakage current area of the Schottky diode, thereby reducing the reverse leakage current and the forward voltage drop. When the first conductive material is a P-type semiconductor, the second conductive material is an N-type semiconductor. When the first conductive material is an N-type semiconductor, the second conductive material is a P-type semiconductor.

    摘要翻译: 具有低反向漏电流和低正向压降的肖特基二极管结构具有与金属层组合的第一导电材料半导体衬底。 在组合的导电材料半导体衬底和金属层的边缘周围形成氧化物层。 在与金属层连接的第一导电材料半导体衬底的表面上形成多个点状或线状的第二导电材料区域。 第二导电材料区域在第一导电材料半导体衬底中形成耗尽区。 耗尽区域可以减小肖特基二极管的漏电流面积,从而减少反向漏电流和正向压降。 当第一导电材料是P型半导体时,第二导电材料是N型半导体。 当第一导电材料是N型半导体时,第二导电材料是P型半导体。