Abstract:
An improved method and apparatus for adjusting the flow of a diaphragm pump. The thickness of the diaphragm itself is capable of being adjusted. Full stroke output is thereby reduced in inverse proportion to the increased volume occupied by the diaphragm. Adjusting the thickness of the diaphragm while the pump is operating provides a means of varying pump output without stopping the pump for adjustments or modifications.
Abstract:
A continuous flow system is disclosed in which successive liquid segments are established containing different related components of a fluid package, such as an analysis mixture, separated by at least one immiscible segment, passed along a first section of a conduit, combined in a second section of the conduit and mixed while passing along a third section of the conduit, so as to provide a completely mixed segment. This system permits the delayed on-line mixing of different components of an analysis mixture, such as samples with reagents or diluents, as well as mixing and interaction of such components in a single conduit.
Abstract:
Apparatus and method are provided for the substantial separation on a continuous flow basis of immiscible liquids flowing as a common stream, with one of the liquids substantially encapsulating another of the liquids, in a flow conduit. The conduit comprises an inner surface which is selectively "wettable" by one of the liquids to the substantial exclusion of another of the liquids; and the liquid separator apparatus are disposed in the conduit and operate to substantially separate the liquids, or at least a portion of one of the liquids, from the common liquids stream as that stream flows into contact with the separator apparatus in the conduit.Apparatus and method for the introduction of a liquid on a continuous flow basis into a flowing stream of another liquid which is immiscible therewith and is flowing in a flow conduit are also provided. The conduit again comprises an inner surface which is selectively "wettable" by one of the liquids to the substantial exclusion of the other of the liquids; and the liquid introduction apparatus are disposed in the conduit and operate to form a common stream of the liquids for continued flow in the conduit, with one of the liquids being substantially encapsulated by another of the liquids, as the liquids are merged at the liquid introduction apparatus in the conduit.
Abstract:
The reaction cuvette adapted to receive a liquid dispensing probe and having at least one surface of hydrophilic material which is treated or formed to have inwardly extending projections against which the liquid is dispensed.
Abstract:
A method for combining magnetic and centrifugal extraction techniques in a manner that improves wash efficiency and reduces the relative disadvantages of stand alone magnetic or centrifugal systems is provided. Centrifugation occurs about the rotational axis of a generally circular container with generally vertical sides featuring an inward protruding physical feature designed to retain material that exceeds the density of supernatent liquid and that is bound to magnetic particles during the centrifugation. During centrifugation, an external magnetic field is applied about the rotational axis of the container such that magnetic lines of force penetrate the container in any desired location. The magnetic and centrifugal forces may be independently modulated or modulated in relative unison to suit the hydrodynamic characteristics of a given complex.
Abstract:
Apparatus and method are provided for the substantial separation on a continuous flow basis of immisicible liquids flowing as a common stream, with one of said liquids substantially encapsulating another of said liquids, in a flow conduit. The conduit comprises an inner surface which is selectively "wettable" by one of the liquids to the substantial exclusion of another of the liquids; and the liquid separator apparatus are disposed in the conduit and operate to substantially separate the liquids, or at least a portion of one of the liquids, from the common liquids stream as that stream flows into contact with the separator apparatus in the conduit.Apparatus and method for the introduction of a liquid on a continuous flow basis into a flowing stream of another liquid which is immisicible therewith and is flowing in a flow conduit are also provided. The conduit again comprises an inner surface which is selectively "wettable" by one of the liquids to the substantial exclusion of the other of the liquids; and the liquid introduction apparatus are disposed in the conduit and operate to form a common stream of the liquids for continued flow in the conduit, with one of the liquids being substantially encapsulated by another of the liquids, as the liquids are merged at the liquid introduction apparatus in the conduit.A liquid processing system including the conduit is provided wherein the liquid introduction apparatus are utilized to form the common liquids stream with one of the liquids being substantially encapsulated within the other of the liquids at a first location in the system; and the liquid separator apparatus are utilized to substantially separate the liquids, or at least a portion of one of the liquids, from the common liquids stream at a second location in the system which is downstream of the first location.As representatively configured in the herein disclosed preferred embodiments, the apparatus and method are applied to automated continuous flow sample liquid analysis systems wherein one of the liquids is an aqueous sample liquid, and the other of the liquids is an isolation liquid which selectively "wets" the hydrophobic inner surface of the flow conduit to the substantial exclusion of the aqueous sample liquids, and which functions to substantially encapsulate the aqueous sample liquids in the common liquids stream; and, for such application, the apparatus and method provide for significant increase in the accuracy of the sample liquid analysis results.
Abstract:
Minimum carryover container for the successive containment of discrete liquids as are successively introduced thereinto, and minimum carryover discrete liquid analysis system utilizing the container, are disclosed and operate through use of container materials which are selectively wettable by an immiscible isolation liquid which is introduced to the container independently of the discrete liquids to form an independently flowing isolation liquid stream which covers the walls of the container from the container inlet to the container outlet thereby preventing contact by the discrete liquids with the container walls. The container can include wall portions enabling the transmission of light energy therethrough from the outside of the container. The analysis system makes use of the container for the successive containment and processing for analysis of the discrete liquids; and for the generation and supply of an isolation liquid based discrete liquid stream containing the processed discrete liquids in series to analysis apparatus, the successive supply of the processed discrete liquids in series to analysis apparatus by the successive withdrawal thereof from the container, or the successive analyses of the processed discrete liquids in situ in the container, respectively.
Abstract:
A transport system is provided in which a plurality of samples are introduced into a carrier stream flowing through a conduit, whose inner surface is coated with an immiscible liquid film. The carrier stream can be a sequence of alternating gas and liquid segments which are in direct contact with each other and, thus, not encompassed by the immiscible liquid. Samples are introduced at various points along the conduit and, thus, the system allows for the collection and transport of samples from a plurality of remote locations to at least one central receiving station where they can, for example, be analyzed. Carryover between successive samples to be transported is effectively eliminated.
Abstract:
Minimum carryover container for the successive containment of discrete liquids as are successively introduced thereinto, and minimum carryover discrete liquid analysis system utilizing the container, are disclosed; and operate through use of container materials which are selectively wettable by an immiscible isolation liquid which is introduced to the container independently of the discrete liquids to form an independently flowing isolation liquid stream which covers the walls of the container from the container inlet to the container outlet thereby preventing contact by the discrete liquids with the container walls. The container can include wall portions enabling the transmission of light energy therethrough from the outside of the container. The analysis system makes use of the container for the successive containment and processing for analysis of the discrete liquids; and for the generation and supply of an isolation liquid based discrete liquid stream containing the processed discrete liquids in series to analysis apparatus, the successive supply of the processed discrete liquids in series to anlysis apparatus by the successive withdrawal thereof from the container, or the successive analyses of the processed discrete liquids in situ in the container, respectively.
Abstract:
A new and improved isolation liquid layer retention device is provided, and comprises a porous member operatively associated with the interior of a container which contains a quantity of an aqueous liquid having a layer of a generally immiscible isolation liquid which is generally of greater density disposed thereon. The porous member is operable to cause the aqueous liquid to form a generally convex meniscus to strongly support the generally denser isolation liquid layer thereon to prevent the sinking of the isolation liquid into the aqueous liquid; and is operable to act as a moderating control by virtue of a "source and sink" action vis-a-vis the isolation liquid to maintain a uniform and readily reproducible configuration for the isolation liquid layer on a container-to-container basis with regard to each of a plurality of the containers. The device is particularly adapted for use with a plurality of containers of aqueous sample and reagent liquids in contemporary automated sample liquid analysis systems.