Abstract:
A microelectronic device comprises pillar structures extending vertically through an isolation material, conductive lines electrically coupled to the pillar structures, contact structures between the pillar structures and the conductive lines, and interconnect structures between the conductive lines and the contact structures. The conductive lines comprise one or more of titanium, ruthenium, aluminum, and molybdenum. The interconnect structures comprise a material composition that is different than one or more of a material composition of the contact structures and a material composition of the conductive lines. Related memory devices, electronic systems, and methods are also described.
Abstract:
Systems, apparatuses, and methods related to reduction of crystal growth resulting from annealing a conductive material are described. An example apparatus includes a conductive material selected to have an electrical resistance that is reduced as a result of annealing. A stabilizing material may be formed over a surface of the conductive material. The stabilizing material may be selected to have properties that include stabilization of the reduced electrical resistance of the conductive material and reduction of a degree of freedom of crystal growth relative to the surface resulting from recrystallization of the conductive material during the annealing.
Abstract:
Memory cells (e.g., CBRAM cells) include an ion source material over an active material and an electrode comprising metal silicide over the ion source material. The ion source material may include at least one of a chalcogenide material and a metal. Apparatuses, such as systems and devices, include a plurality of such memory cells. Memory cells include an adhesion material of metal silicide between a ion source material and an electrode of elemental metal. Methods of forming a memory cell include forming a first electrode, forming an active material, forming an ion source material, and forming a second electrode including metal silicide over the metal ion source material. Methods of adhering a material including copper and a material including tungsten include forming a tungsten silicide material over a material including copper and treating the materials.
Abstract:
Methods, apparatuses, and systems related to conductive structures are described. An example conductive structure includes a first conductive material including a conductive metal nitride, where the first conductive material has a thickness of at least 0.5 nanometers, and a second conductive material including a conductive metal, where the second conductive material is disposed on a first surface of the first conductive material.
Abstract:
Some embodiments include an integrated transistor having an active region comprising semiconductor material. A conductive gating structure is adjacent to the active region. The conductive gating structure includes an inner region proximate the active region and includes an outer region distal from the active region. The inner region includes a first material containing titanium and nitrogen, and the outer region includes a metal-containing second material. The second material has a higher conductivity than the first material. Some embodiments include integrated assemblies. Some embodiments include methods of forming integrated assemblies.
Abstract:
A microelectronic device comprises pillar structures extending vertically through an isolation material, conductive lines electrically coupled to the pillar structures, contact structures between the pillar structures and the conductive lines, and interconnect structures between the conductive lines and the contact structures. The conductive lines comprise one or more of titanium, ruthenium, aluminum, and molybdenum. The interconnect structures comprise a material composition that is different than one or more of a material composition of the contact structures and a material composition of the conductive lines. Related memory devices, electronic systems, and methods are also described.
Abstract:
Apparatus, devices, systems, and methods are described that include filamentary memory cells. Mechanisms to substantially remove the filaments in the devices are described, so that the logical state of a memory cell that includes the removable filament can be detected. Additional apparatus, systems, and methods are described.
Abstract:
An electronic device includes two conductive electrodes. A first current path extends from one of the electrodes to the other and has a dominant thermally activated conduction activation energy of 0.5 eV to 3.0 eV. A second current path extends from the one electrode to the other and is circuit-parallel the first current path. The second current path exhibits a minimum 100-times increase in electrical conductivity for increasing temperature within a temperature range of no more than 50° C. between 300° C. and 800° C. and exhibits a minimum 100-times decrease in electrical conductivity for decreasing temperature within the 50° C. temperature range. Other embodiments are disclosed.
Abstract:
Apparatus, devices, systems, and methods are described that include filamentary memory cells. Mechanisms to substantially remove the filaments in the devices are described, so that the logical state of a memory cell that includes the that includes the removable filament can be detected. Additional apparatus, systems, and methods are described.
Abstract:
A microelectronic device comprises pillar structures extending vertically through an isolation material, conductive lines electrically coupled to the pillar structures, contact structures between the pillar structures and the conductive lines, and interconnect structures between the conductive lines and the contact structures. The conductive lines comprise one or more of titanium, ruthenium, aluminum, and molybdenum. The interconnect structures comprise a material composition that is different than one or more of a material composition of the contact structures and a material composition of the conductive lines. Related memory devices, electronic systems, and methods are also described.