Abstract:
A supply-and-demand adjustment system, that utilizes characteristics of supply-and-demand adjustment apparatuses and precisely matches a total supply-and-demand adjustment amount with a required adjustment amount when performing a supply-and-demand adjustment. The supply-and-demand adjustment system comprises a central control apparatus and one or more supply-and-demand adjustment apparatuses, the central control apparatus includes a state collection unit that collects information with regard to a state of each supply-and-demand adjustment apparatus, an allocation band calculation unit that calculates a frequency band and an intensity of a fluctuation of a supply-and-demand adjustment to be allocated to each supply-and-demand adjustment apparatus based on the information of the state, and an adjustment amount calculation unit that calculates a supply-and-demand adjustment amount for each supply-and-demand adjustment apparatus based on the frequency band and the intensity of the fluctuation of the supply-and-demand adjustment to be allocated to said each supply-and-demand adjustment apparatus.
Abstract:
A monitoring system including a plurality of monitoring devices (20) and a server (10) is provided. When new device data including a feature amount of a new electrical device different form existing electrical devices is extracted from measurement data (current consumption or the like), the monitoring device (20) calibrates the feature amount of the new electrical device using calibration data generated based on calibration data of the exiting electrical device, and transmits the new device data to the server (10) in association with identification information of the new electrical device. When the calibrated new device data of the new electrical device is received from the plurality of monitoring devices (20), the server (10) generates and registers training data of the new electrical device based on the plurality of pieces of calibrated new device data.
Abstract:
A monitoring device (10) includes: a unit-specific waveform data acquisition unit (12) that acquires unit-specific monitoring waveform data which is waveform data of at least one among total current consumption, a total input voltage, and total power consumption in a unit in which monitoring target electrical devices are installed; a first inference unit (13) that infers operation states of at least some of the monitoring target electrical devices based on a 1st feature amount group including at least one kind of feature amount extracted from the unit-specific monitoring waveform data, and a training feature amount which is a feature amount of each of the monitoring target electrical devices in a predetermined operation state; and a second inference unit (14) that infers the operation states of some of the monitoring target electrical devices based on a 2nd feature amount group including at least one kind of feature amount extracted from the unit-specific monitoring waveform data, and different from the 1st feature amount group and the training feature amount.
Abstract:
An energy management method for an energy supply system which includes at least an energy storage, a load and a generator with power dependent efficiency is provided. The method includes: calculating two time variant parameters indicating a discharge lower limit and an upper charge limit, respectively, of the energy storage, based on optimization using different kinds of prediction; and controlling, in a real time manner, charging and discharging of the energy storage and operation of the generator, with a certain priorities given to various power sources, such that state of charge of the energy storage is controlled within a region between the discharge lower limit and the upper charge limit. When a grid power is available, blackout duration probability function is predicted and used to calculate the discharge lower limit and the upper charge limit.
Abstract:
A power control system includes an acquisition unit that acquires information indicating the amount of power demand that is used by a consumer according to predetermined information that prompts adjustment of the power demand, and a control unit that controls a predetermined apparatus in accordance with a target demand amount and the information indicating the power demand amount.
Abstract:
A storage cell control system configured to perform charge/discharge control for a plurality of storage cells under control based on a power adjustment request from a power system includes: a power storage capacity calculating means configured to calculate a current power storage capacity of the storage cell based on storage cell information of the storage cell; a target power storage capacity setting means configured to set a target power storage capacity in stopping an operation of the storage cell; a capacity degradation speed calculating means configured to calculate a current capacity degradation speed and a target capacity degradation speed with respect to each power storage capacity by applying the current power storage capacity and the target power storage capacity to capacity degradation speed correlation information set in advance; and a power distributing means configured to distribute power to the plurality of storage cells in such a manner that when it is assumed that t is an elapsed time from start of operation, a capacity degradation amount DSOCvaried(t) is a time integral value of a capacity degradation speed in a case where the capacity degradation speed varies according to a power storage capacity, and a capacity degradation amount DSOCfixed(t) is a time integral value of a capacity degradation speed in a case where the capacity degradation speed is fixed regardless of a power storage capacity, a capacity degradation amount minimization condition: a capacity degradation amount DSOCvaried(t)≤a capacity degradation amount DSOCfixed(t) is satisfied.
Abstract:
A power generation control device is provided with: a communication unit that receives output control information determined on the basis of a first index that relates to the output state at a power generation device group and a second index that relates to the output state at a predetermined power generation device; and a control unit that controls the output of the predetermined power generation device on the basis of the output control information.
Abstract:
An object of the present invention is to set a demand schedule for performing highly efficient demand-supply adjustment of electric power, to deal with electric power demand. To achieve the object, an energy management apparatus of the present invention is an energy management apparatus for performing demand-supply adjustment of electric power by use of a plurality of chargeable and dischargeable energy storage devices, comprising: a plan management means for acquiring a variation of a load of an electric power grid predicted during a target period; and a demand variation setting means for setting a value of an operational electric energy for charging and discharging of each of the plurality of energy storage devices to be a value corresponding to a halt state or a value between a minimum rated output and a maximum rated output, in a manner to make a difference between maximum and minimum values of the load be smaller than a difference that is predicted, by operation of the plurality of energy storage devices.
Abstract:
The present invention allows the realization of sufficient control precision and control reliability when using a power supply/demand adjustment device group. A control device (A) that controls power supply/demand adjustment devices includes a communication unit (A1) that receives operation control information of the power supply/demand adjustment devices and a control unit (A2) that executes operation control of the power supply/demand adjustment devices on the basis of the operation control information received by the communication unit. There is a difference, in at least one of the intervals from among the interval for receiving the operation control information and the interval for executing the operation control, between the control device that controls power supply/demand adjustment devices and other control devices that are in different states.
Abstract:
A battery control system that communicates by way of a communication network with a plurality of batteries that are connected to an electric power system includes a communication characteristics detection unit that, for each of the plurality of batteries, detects characteristics of communication paths between the batteries and the battery control system within the communication network. The battery control system includes a selection unit which selects, from among the plurality of batteries, each battery that has characteristics of communication paths within a predetermined communication characteristics range, as a regulating battery that is to be used for regulating electric power of the electric power system. The battery control system includes a control unit that supplies operation instructions that instructs the regulating batteries that were selected in the selection unit to perform a charging or discharging operation.