Abstract:
Systems, methods, apparatuses, and computer program products relating to coordinated scheduling with adaptive muting are provided. One method comprises transmitting, by a network element, calculated impact information for a cell of the network element when taking an action related to a cell of the network element and/or taking an action related to a cell of a second network element. The method may also comprise transmitting a request for taking the action related to the cell of the second network element under certain circumstances.
Abstract:
A UE is configured with restrictions that restrict resources carrying RSs and IMRs to specific resources to be used by the UE for determining CSI. The restrictions are both of the following: first restrictions in time, frequency, or both time and frequency of resources that carry the reference signals; and second restrictions in time, frequency, or both time and frequency of resources that carry the interference measurement resources. The RSs and IMRs are transmitted by a base station to and received by the UE. The UE determines the CSI based on the specific resources for the RSs and IMRs. The CSI, determined based on the RS, IMRs, and the restrictions, is received from and transmitted by the UE. The base station uses the CSI for a MU-MIMO transmission. Apparatus, methods, computer software, and program products are disclosed.
Abstract:
A method includes receiving downlink reference signals from a transmit antenna array having of rows of azimuth antenna elements and columns of elevation antenna elements; computing first channel state information feedback components assuming azimuth-only adaptation; computing second channel state information feedback components assuming elevation-only adaptation; computing third channel state information feedback components assuming elevation-adaptation and elevation adaptation; and feeding back the first, second and third channel state information feedback components.
Abstract:
A technique of reducing interference at a wireless node includes: determining a location of a base station relative to a wireless node, determining, based at least on the location of the base station relative to the wireless node, a beam-reduction region that includes one or more interfering transmit beams of the base station within the beam-reduction region, and causing the base station to decrease a transmit power for the one or more interfering transmit beams within the beam-reduction region.
Abstract:
A method and apparatus may include receiving, by a first network node, mapping information from at least one second network node. The mapping information indicates restrictions with respect to antenna ports to be used for measurements on each of one or more channel-state-information-reference-signal resources transmitted by at least one second network node. The method may also include transmitting a message to a user equipment. The message configures the user equipment to measure channel-state-information-reference-signal-received power from at least one of said one or more channel-state-information-reference-signal resources. The method may also include receiving a reporting from the user equipment.
Abstract:
Systems and techniques for joint transmission cooperative multi-point. A set of n CSI reference signal resources are to be measured by a user device. The n CSI reference signal resources include at least one CSI reference signal resource spanning over at least two transmission points. Channel state information feedback corresponding to each CSI reference signal resource is configured. Upon receiving CSI from the user device, at least one precoder is selected for coherent joint cooperative multipoint transmission based on inter-transmission point phase relationship information. A co-phasing factor is derived from transmitted precoders over a cross-cell CSI reference signal resource, the derivation including transmission of reference signals using first and second precoding vectors on two ports, computation of a third vector using feedback based on the precoded reference signals, and computation of the co-phasing factor based on the first, second, and third vectors.
Abstract:
Systems and techniques for joint transmission cooperative multi-point. A set of n CSI reference signal resources are to be measured by a user device. The n CSI reference signal resources include at least one CSI reference signal resource spanning over at least two transmission points. Channel state information feedback corresponding to each CSI reference signal resource is configured. Upon receiving CSI from the user device, at least one precoder is selected for coherent joint cooperative multipoint transmission based on inter-transmission point phase relationship information. A co-phasing factor is derived from transmitted precoders over a cross-cell CSI reference signal resource, the derivation including transmission of reference signals using first and second precoding vectors on two ports, computation of a third vector using feedback based on the precoded reference signals, and computation of the co-phasing factor based on the first, second, and third vectors.
Abstract:
Various communication systems may benefit from managing signal interference. For example, certain wireless communication systems may benefit from a dynamic time division duplex system involving slot allocation. A method includes allocating, by an access point, in a time division duplex frame a plurality of radio resource slots, each one of the plurality of radio resource slots being allocated for a downlink or an uplink transmission, and determining that the allocation of the downlink or uplink transmission should be changed. The method also includes applying a permutation pattern to re-allocate at least one of the plurality of radio resource slots for the downlink or uplink transmission.
Abstract:
Systems, methods, apparatuses, and computer program products for joint network assisted interference cancellation and suppression (NAICS) and coordinated multi-point (COMP) operation are provided. One method includes configuring, by a network node, a victim user equipment and interfering user equipment in transmission mode 10 (TM10) with multiple channel state information (CSI) processes to perform dynamic point muting. The method may further include signaling network assisted interference cancellation and suppression (NAICS) information to the victim user equipment pretending the interfering user equipment mode is transmission mode 9 (TM9) or transmission mode 8 (TM8).
Abstract:
In accordance with the exemplary embodiments there is at least a method and apparatus to operations including determining, by a communication device, parameters for each of at least one interfering radio signal of a communication signal received by one or more antenna of the communication device; and based on the determined parameters, at least one of suppressing and cancelling the at least one interfering radio signal from the communication signal by the communication device.