Abstract:
On a flexible substrate is printed LEDs and a driver circuit containing transistors. The LEDs and transistors are printed microscopic devices contained in an ink. The LEDs are printed in groups and connected in parallel, and the transistors are printed in groups and connected in parallel. Other components, such as resistors and an on/off switch, are also printed to form the driver. A battery and other circuit components may also be printed on the substrate. An overlay is provided over the LEDs to create a desired light pattern. The LEDs and driver may be generic, and the overlay customizes the light pattern for a particular application. The transistors in the driver may be interconnected with a trace pattern to drive the LEDs in a customized manner, such as for an insert in a product package for marketing to a consumer.
Abstract:
A method of forming a light sheet includes printing a layer of inorganic LEDs on a first conductive surface of a substrate, depositing a first dielectric layer, and depositing a second conductor layer over the LEDs so that the LEDs are connected in parallel. At least one of the first conductive surface or the second conductor layer is transparent to allow light to escape. A phosphor layer may be formed over the light sheet so that the LED light mixed with the phosphor light creates white light. The flat light sheet is then folded, such as by molding, to form a three-dimensional structure with angled light emitting walls and reflective surfaces to control a directionality of the emitted light and improve the mixing of light. The folds may form rows of angled walls or polygons.
Abstract:
Microscopic LED dice are printed in groups, to form pixels, on a thin transparent substrate, and the LEDs in each pixel are sandwiched between two transparent conductor layers to connect the LEDs in parallel. This forms a single 2-dimensional pixel layer that is substantially transparent, where the pixels are individually addressable. Multiple pixel layers are stacked with an index-matched spacer layer therebetween to form a 3-dimensional array of pixels. If the 3-D display is formed as a cube, the viewing window may be the top pixel layer. All pixel layers are simultaneously viewable through the viewing window since each layer is transparent. Accordingly, 3-dimensional images may be displayed. In another embodiment, one or more LED pixels layers are folded, like an accordion, to achieve a stereoscopic effect so that the left and right eyes see different images to convey depth.
Abstract:
Various applications and customizations of a thin flexible LED light sheet are described. Microscopic LED dice are printed on a thin substrate, and the LEDs are sandwiched between two conductor layers to connect the LEDs in parallel. The conductor layer on the light emitting side is transparent. In one embodiment, the light sheet backlights all or a portion of a translucent ceiling material of an automobile to cause the backlit portion of the ceiling material to illuminate the automobile's interior with diffused lighting. This greatly reduces glare for the driver. The emitted color of the light sheet may be adjusted to compensate for the color component added by the ceiling material color. Four light sheets may be connected in series to drop approximately 12 volts. The light sheet color may be controllable by using adjustable RGB color components, either with phosphors or different LED colors.
Abstract:
On a flexible substrate is printed LEDs and a driver circuit containing transistors. The LEDs and transistors are printed microscopic devices contained in an ink. The LEDs are printed in groups and connected in parallel, and the transistors are printed in groups and connected in parallel. Other components, such as resistors and an on/off switch, are also printed to form the driver. A battery and other circuit components may also be printed on the substrate. An overlay is provided over the LEDs to create a desired light pattern. The LEDs and driver may be generic, and the overlay customizes the light pattern for a particular application. The transistors in the driver may be interconnected with a trace pattern to drive the LEDs in a customized manner, such as for an insert in a product package for marketing to a consumer.
Abstract:
On a flexible substrate is printed LEDs and a driver circuit containing transistors. The LEDs and transistors are printed microscopic devices contained in an ink. The LEDs are printed in groups and connected in parallel, and the transistors are printed in groups and connected in parallel. Other components, such as resistors and an on/off switch, are also printed to form the driver. A battery and other circuit components may also be printed on the substrate. An overlay is provided over the LEDs to create a desired light pattern. The LEDs and driver may be generic, and the overlay customizes the light pattern for a particular application. The transistors in the driver may be interconnected with a trace pattern to drive the LEDs in a customized manner, such as for an insert in a product package for marketing to a consumer.
Abstract:
In one embodiment, a flexible light sheet includes a transparent, thin polymer substrate on which is formed a dielectric first light scattering layer containing nano-particles. A transparent conductor layer is formed over the first light scattering layer. An array of microscopic, inorganic vertical LEDs is printed over the transparent conductor layer so that bottom electrodes of the LEDs make electrical contact to the conductor layer. A dielectric second light scattering layer, also containing the nano-particles, is printed over the transparent conductor layer to laterally surround the LEDs. A top conductor layer makes electrical contact to the top LED electrodes to connect the LEDs in parallel. Light from the LEDs is scattered by the nano-particles in the two light scattering layers by Mei scattering. This reduces total internal reflection in both the first light scattering layer and the transparent conductor layer to increase light extraction.
Abstract:
LED dies are suspended in an ink and printed on a first support substrate to form a light emitting layer having a light emitting surface emitting primary light, such as blue light. A mixture of a transparent binder, phosphor powder, and transparent glass beads is formed as an ink and printed over the light emitting surface. The mixture forms a wavelength conversion layer when cured. The beads are preferably sized so that the tops of the beads protrude completely through the conversion layer. Some of the primary light passes through the beads with virtually no attenuation or backscattering, and some of the primary light is converted by the phosphor to secondary light. The combination of the secondary light and the primary light passing though the beads may form white light. The overall color is highly controllable by controlling the percentage weight of the beads.
Abstract:
LED dies are suspended in an ink and printed on a first support substrate to form a light emitting layer having a light emitting surface emitting primary light, such as blue light. A mixture of a transparent binder, phosphor powder, and transparent glass beads is formed as an ink and printed over the light emitting surface. The mixture forms a wavelength conversion layer when cured. The beads are preferably sized so that the tops of the beads protrude completely through the conversion layer. Some of the primary light passes through the beads with virtually no attenuation or backscattering, and some of the primary light is converted by the phosphor to secondary light. The combination of the secondary light and the primary light passing though the beads may form white light. The overall color is highly controllable by controlling the percentage weight of the beads.
Abstract:
Various applications and customizations of a thin flexible LED light sheet are described. Microscopic LED dice are printed on a thin substrate, and the LEDs are sandwiched between two conductor layers to connect the LEDs in parallel. The conductor layer on the light emitting side is transparent. In one embodiment, the light sheet is applied to the bottom surface of a controllable display to serve as a backlight. In another embodiment, the light sheet is applied to the edge of a leaky light guide for backlighting. In another embodiment, a thin light-emitting edge of the light sheet is coupled to the edge of the leaky light guide for backlighting. In another embodiment, the light sheet is affixed to a medical instrument, and light is emitted from a thin light-emitting edge of the light sheet. In one embodiment, the light sheet is optically coupled to an optical fiber.