Abstract:
An optical detecting device includes a light source, an optical detecting component, a package structure and a light tight component. The light source outputs a sampling signal to project onto an external object. The optical detecting component is disposed by the light source and has an interval relative to the light source. The optical detecting component receives the sampling signal reflected from the external object. The package structure covers the optical detecting component and the light source, and includes an illuminating surface unit and an incident surface unit respectively corresponding to the light source and the optical detecting component, and further includes an isolation component disposed between the illuminating surface unit and the emerging surface unit. The light tight component is disposed on the isolation component to obstruct transmission path of the sampling signal from the illuminating surface unit to the incident surface without reflection by the external object.
Abstract:
An image brightness information adjusting method, which comprises: computing background brightness information of an image; computing a first brightness information difference between brightness information for at least one pixel of a first image line of the image and background brightness information corresponding to the first image line; and adjusting brightness information for at least one pixel of a second image line according to the first brightness information difference.
Abstract:
An optical detecting device includes a light source, an optical detecting component, a package structure and a light tight component. The light source outputs a sampling signal to project onto an external object. The optical detecting component is disposed by the light source and has an interval relative to the light source. The optical detecting component receives the sampling signal reflected from the external object. The package structure covers the optical detecting component and the light source, and includes an illuminating surface unit and an incident surface unit respectively corresponding to the light source and the optical detecting component, and further includes an isolation component disposed between the illuminating surface unit and the emerging surface unit. The light tight component is disposed on the isolation component to obstruct transmission path of the sampling signal from the illuminating surface unit to the incident surface without reflection by the external object.
Abstract:
An optical lens is configured in front of an image-capturing lens of an image-capturing device. A light-emitting unit of the image-capturing device emits a light beam. The optical lens includes a pair of peripheral compensation portions and a central diverging portion. Each peripheral compensation portion has a first convex surface and a first concave surface arranged opposite to the first convex surface. The central diverging portion is arranged between the peripheral compensation portions, and has a second concave surface and an oppositely arranged light incident surface. The second concave surface is arranged between the first convex surfaces. The light incident surface is arranged between the first concave surfaces. The optical axis of the light beam sequentially aligns with the light incident surface and the second concave surface. The light rays of the light beam pass through the first concave surface and the first convex surface in sequence.
Abstract:
An optical touch system including a touch surface, a plurality of image sensors, a calculation unit and an identification unit is provided. The touch surface is for interactive operation with an object. Each of the image sensors is configured to capture an image frame looking across the touch surface. The calculation unit is configured to calculate a coordinate of the object and an operating depth of the object corresponding to each of the image sensors according to the image frame. The identification unit is configured to increase a count value when the coordinate is within an operable range of one of the image sensors and the operating depth corresponding to the image sensor exceeds a depth threshold to accordingly perform hovering identification according to the count value.
Abstract:
A method of calculating a coordinate of a touch medium is disclosed in the present invention. The method includes obtaining a first image to determine whether the first image overlaps a first threshold, generating a first interceptive boundary when the first image overlaps the first threshold, obtaining a second image to generate a second interceptive boundary by overlap of the second image and a second threshold, determining whether the first interceptive boundary overlaps the second interceptive boundary, and confirming a status of the touch medium according to determination.
Abstract:
A multi-segment optical component applied to increase signal-to-noise ratio includes a base, a central lens portion, an isolating lens portion and a collecting lens portion. The central lens portion is disposed on center of the base. The isolating lens portion is disposed by a side of the central lens portion, and the collecting lens portion is disposed by the other side of the central lens portion opposite to the isolating lens portion. At least one of the isolating lens portion and the collecting lens portion has a curvature radius different from a curvature radius of the central lens portion, and the curvature radius of the isolating lens portion can be similar to or different from the curvature radius of the collecting lens portion. The central lens portion has a central axle which does not overlap a curvature center of one of the isolating lens portion and the collecting lens portion.
Abstract:
An image brightness information adjusting method, which comprises: computing background brightness information of an image; computing a first brightness information difference between brightness information for at least one pixel of a first image line of the image and background brightness information corresponding to the first image line; and adjusting brightness information for at least one pixel of a second image line according to the first brightness information difference.
Abstract:
A multi-segment optical component applied to increase signal-to-noise ratio includes a base, a central lens portion, an isolating lens portion and a collecting lens portion. The central lens portion is disposed on center of the base. The isolating lens portion is disposed by a side of the central lens portion, and the collecting lens portion is disposed by the other side of the central lens portion opposite to the isolating lens portion. At least one of the isolating lens portion and the collecting lens portion has a curvature radius different from a curvature radius of the central lens portion, and the curvature radius of the isolating lens portion can be similar to or different from the curvature radius of the collecting lens portion. The central lens portion has a central axle which does not overlap a curvature center of one of the isolating lens portion and the collecting lens portion.
Abstract:
There is provided a light source module including an LED die and a light guide member. The light guide member is formed by injection molding to encapsulate the LED die. The light guide member is coated with a reflection film on a part of surface thereof and has at least one tilted surface opposite to the LED die.