摘要:
A sample detection system including an anti-resonant waveguide, including a sample having a first index of refraction, a top layer and a substrate surrounding the sample, where the top layer has a second index of refraction, and the substrate has a third index of refraction. The second index of refraction, and the third index of refraction are both greater than the first index of refraction. A detection device of the system includes a low power light source used to direct light into the sample and generate an anti-resonant optical mode in the sample, and an analyzing system to detect the interaction of the light propagating in the sample.
摘要:
A sample detection system including an anti-resonant waveguide, including a sample having a first index of refraction, a top layer and a substrate surrounding the sample, where the top layer has a second index of refraction, and the substrate has a third index of refraction. The second index of refraction, and the third index of refraction are both greater than the first index of refraction. A detection device of the system includes a low power light source used to direct light into the sample and generate an anti-resonant optical mode in the sample, and an analyzing system to detect the interaction of the light propagating in the sample.
摘要:
An integrated circuit (IC) includes a photosensor array, some cells of which are reference cells that photosense throughout an application's energy range, while other cells of which are subrange cells that photosense within respective subranges. For example, the subrange cells can receive photons in their respective subranges from a transmission structure that has laterally varying properties, such as due to varying optical thickness. The reference cells may be uncoated or may also receive photons through a transmission structure such as a gray filter. Subrange cells and reference cells may be paired in adjacent lines across the array, such as rows. Where photon emanation can vary along a path, quantities of incident photons photosensed by subrange cells along the path can be adjusted based on quantities photosensed by their paired reference cells, such as with normalization.
摘要:
An integrated circuit (IC) includes a photosensor array, some cells of which are reference cells that photosense throughout an application's energy range, while other cells of which are subrange cells that photosense within respective subranges. For example, the subrange cells can receive photons in their respective subranges from a transmission structure that has laterally varying properties, such as due to varying optical thickness. The reference cells may be uncoated or may also receive photons through a transmission structure such as a gray filter. Subrange cells and reference cells may be paired in adjacent lines across the array, such as rows. Where photon emanation can vary along a path, quantities of incident photons photosensed by subrange cells along the path can be adjusted based on quantities photosensed by their paired reference cells, such as with normalization.
摘要:
A chip-size wavelength detector includes a film with laterally varying transmission properties and a position-sensitive detector. The film transmits a different wavelength as a function of lateral position across the film. The position of a spot of light transmitted through the film will shift, depending on the wavelength of the light. The shift is measured by the position-sensitive detector.
摘要:
A chip-size wavelength detector includes a film with laterally varying transmission properties and a position-sensitive detector. The film transmits a different wavelength as a function of lateral position across the film. The position of a spot of light transmitted through the film will shift, depending on the wavelength of the light. The shift is measured by the position-sensitive detector.
摘要:
A method is provided for extracting the position of a particle, e.g., a moving or stationary particle that is excited or is emitting light. The method includes, among other steps, detecting and recording a signal based on, for example, the movement of the particle, a correlation step to eliminate noise and to create a transformed signal, a matching or fitting step to match the transformed signal to a fit function and an extracting or determining step to determine the position of the particle from the fit function. In one form, at least two particle positions are detected so that the distance between the subject particles can be determined.
摘要:
A tunable optical cavity can be tuned by relative movement between two reflection surfaces, such as by deforming elastomer spacers connected between mirrors or other light-reflective components that include the reflection surfaces. The optical cavity structure includes an analyte region in its light-transmissive region, and presence of analyte in the analyte region affects output light when the optical cavity is tuned to a set of positions. Electrodes that cause deformation of the spacers can also be used to capacitively sense the distance between them. Control circuitry that provides tuning signals can cause continuous movement across a range of positions, allowing continuous photosensing of analyte-affected output light by a detector.
摘要:
A device can include both a photosensing component and an optical cavity structure, with the optical cavity structure including a part that can operate as an optical cavity in response to input light, providing laterally varying output light. For example, the optical cavity can be a graded linearly varying filter (LVF) or other inhomogeneous optical cavity, and the photosensing component can have a photosensitive surface that receives its output light without it passing through another optical component, thus avoiding loss of information. The optical cavity part can include a region that can contain analyte. Presence of the analyte affects the optical cavity part's output light, and the photosensing component can respond to the output light, providing sensing results indicating the analyte's optical characteristics.
摘要:
An inhomogeneous optical cavity is tuned by changing its shape, such as by changing reflection surface positions to change tilt angle, thickness, or both. Deformable components such as elastomer spacers can be connected so that, when deformed, they change relative positions of structures with light-reflective components such as mirrors, changing cavity shape. Electrodes can cause deformation, such as electrostatically, electromagnetically, or piezoelectrically, and can also be used to measure thicknesses of the cavity. The cavity can be tuned, for example, across a continuous spectrum, to a specific wavelength band, to a shape that increases or decreases the number of modes it has, to a series of transmission ranges each suitable for a respective light source, with a modulation that allows lock-in with photosensing for greater sensitivity, and so forth. The optical cavity can be a linear variable filter fabricated on the photosensitive surface of a photosensing component such as a photosensor array or a position-sensitive detector.