Abstract:
Systems, methods, and computer programs are disclosed for providing secure access control to a graphics processing unit (GPU). One system includes a GPU, a plurality GPU programming interfaces, and a command processor. Each GPU programming interface is dynamically assigned to a different one of a plurality of security zones. Each GPU programming interface is configured to receive work orders issued by one or more applications associated with the corresponding security zone. The work orders comprise instructions to be executed by the GPU. The command processor is in communication with the plurality of GPU programming interfaces. The command processor is configured to control execution of the work orders received by the plurality of GPU programming interfaces using separate secure memory regions. Each secure memory region is allocated to one of the plurality of security zones.
Abstract:
A first processor and a second processor are configured to communicate secure inter-processor communications (IPCs) with each other. The first processor effects secure IPCs and non-secure IPCs using a first memory management unit (MMU) to route the secure and non-secure IPCs via a memory system. The first MMU accesses a first page table stored in the memory system to route the secure IPCs and accesses a second page table stored in the memory system to route the non-secure IPCs. The second processor effects at least secure IPCs using a second MMU to route the secure IPCs via the memory system. The second MMU accesses the second page table to route the secure IPCs.
Abstract:
Various embodiments of methods and systems for hardware-based memory power management (“HMPM”) in a portable computing device (“PCD”) running secure and non-secure execution environments are disclosed. Hardware-based state machines are uniquely associated with, and under the control of, the non-secure execution environment, the secure execution environment and a virtual manager, respectively. The states of the state machines constitute votes by each of the execution environments and the virtual manager to control the power supply state to the memory component, such as a cache memory. The votes are monitored by a digital circuit that, based on a combination logic of the votes, generates an output signal to trigger a power management component to maintain, supply or remove power on a rail associated with the memory component. In this way, the power supply state to the memory component cannot be unilaterally changed by an application running in the non-secure execution environment.
Abstract:
Systems and methods are disclosed for providing memory address translation for a memory management system. One embodiment of such a system comprises a memory device and an application processor in communication via a system interconnect. The application processor comprises test code for testing one or more of a plurality of hardware devices. Each of the hardware devices has a corresponding system memory management unit (SMMU) for processing memory requests associated with the hardware device to the memory device. The system further comprises a client-side address translation system in communication with the system interconnect and the plurality of SMMUs. The client-side address translation system is configured to selectively route stimulus traffic associated with the test code to a client port on one or more of the plurality of SMMUs for testing the corresponding hardware devices.
Abstract:
A security apparatus and method are provided for performing a security algorithm that prevents unauthorized access to contents of a physical address (PA) that have been loaded into a storage element of the computer system as a result of performing a prediction algorithm during a hardware table walk that uses a predictor to predict a PA based on a virtual address (VA). When the predictor is enabled, it might be possible for a person with knowledge of the system to configure the predictor to cause contents stored at a PA of a secure portion of the main memory to be loaded into a register in the TLB. In this way, a person who should not have access to contents stored in secure portions of the main memory could indirectly gain unauthorized access to those contents. The apparatus and method prevent such unauthorized access to the contents by masking the contents under certain conditions.
Abstract:
A portable computing device is arranged with one or more subsystems that include a processor and a memory management unit arranged to execute threads under a subsystem level operating system. The processor is in communication with a primary memory. A first area of the primary memory is used for storing time critical code and data. A second area is available for demand pages required by a thread executing in the processor. A secondary memory is accessible to a hypervisor. The processor generates an interrupt when a page fault is detected. The hypervisor, in response to the interrupt, initiates a direct memory transfer of information in the secondary memory to the second area available for demand pages in the primary memory. Upon completion of the transfer, the hypervisor communicates a task complete acknowledgement to the processor.