Abstract:
Systems and methods relate to division of a dividend by a divisor, with fast result formatting. Counts of leading sign bits of the dividend and the divisor are determined. The dividend and the divisor are normalized based on their respective counts of leading sign bits to obtain a normalized dividend and a normalized divisor, respectively. An exact number of significant quotient bits of a quotient of the division, based on the normalized dividend, the normalized divisor, and the counts of leading sign bits of the dividend and the divisor and used to determine a correct position of a leading bit of the quotient based on this exact number. The quotient is developed by placing the leading bit at or near the correct position and appending less significant bits to the right of the leading bit. Thus, left-shifts in each iteration and large final shifts are avoided in formatting the result.
Abstract:
Systems and methods relate to a division/root computation unit. A lookup table according to a Sweeney, Robertson, and Tocher (SRT) algorithm for a division/root computation is stored in a memory. Information related to a selected column corresponding to a divisor/root estimate is stored in a high-speed memory. Division/root computation is performed iteratively using the cached information to improve access times and reduce latency of accessing the entire lookup table on each iteration. In each iteration, a quotient/root is determined from the cached information based on a current partial remainder, and a next partial remainder is generated based on the quotient/root, the divisor/root estimate, and the current partial remainder.
Abstract:
A method and apparatus for allowing an out-of-order processor to reuse an in-use physical register is disclosed herein. The method and apparatus uses identifiers, such as tokens and/or other identifiers in a rename map table (RMT) and a physical register file (PRF), to indicate whether an instruction result is allowed or disallowed to be written into a physical register.
Abstract:
Systems and methods for managing access to a cache relate to determining one or more execute permissions associated with a write-address of a write-request to the cache. The cache may be a unified cache for storing data as well as instructions. If there is a write-miss in the cache for the write-request, a cache controller may determine whether to implement a write-allocate policy or a write-no-allocate policy for servicing the write-miss, based on the one or more execute permissions. The one or more execute permissions can relate to a privilege level associated with the write-address. Execute permissions of a producing agent which generated the write-request and an execute permission of a consuming agent which can execute from the write-address may be based on the privilege levels of the producing agent and the consuming agent, respectively.
Abstract:
A memory structure compresses a portion of a memory tag using an indexed tag compression structure. A set of higher order bits of the memory tag may be stored in the indexed tag compression structure, where the set of higher order bits are identified by an index value. A tag array stores a set of lower order bits of the memory tag and the index value identifying the entry in the tag compression structure storing the set of higher order bits of the memory tag. The memory tag may comprise at least a portion of a memory address of a data element stored in a data array.