Abstract:
Methods, systems, computer-readable media, and apparatuses for obtaining blood pressure measurements are presented. The blood pressure measurements may be obtained by determining a pulse-transit time (PTT) as a function of a photoplethysmography (PPG) measurement and electrocardiogram (ECG) measurement. A mobile device includes outer body sized to be portable for a user of the mobile device. The mobile device also includes a plurality of light emitting components distributed along at least one portion of the mobile device and a plurality of light collecting components configured to measure reflected light from the plurality of light emitting components reflected off of blood vessels within the user. The light emitting and light collecting components are distributed along the at least one portion of the mobile device. The mobile device may also include a light guide configured to direct light emitted by the at least one light emitting component toward blood vessels with the user.
Abstract:
In general, techniques are described for maintaining occupant awareness in vehicles. A device configured to maintain occupant awareness in a vehicle comprising: a processor and a display may be configured to perform the techniques. The processor may determine a location at which an occupant is gazing, and generate, when the determined location indicates that the occupant is not focused on a direction in which the vehicle is traveling, one or more contextual images capable of assisting the occupant in maintaining awareness of a context in which the vehicle is currently operating. The display may present, based on the determined location, the one or more contextual images proximate to the determined position within the cabin of the vehicle to assist the occupant in assuming control of the vehicle when the vehicle is no longer able to autonomously control the operation of the vehicle.
Abstract:
In general, techniques are described for maintaining occupant awareness in vehicles. A device configured to maintain occupant awareness in a vehicle comprising: a processor and a display may be configured to perform the techniques. The processor may determine a location at which an occupant is gazing, and generate, when the determined location indicates that the occupant is not focused on a direction in which the vehicle is traveling, one or more contextual images capable of assisting the occupant in maintaining awareness of a context in which the vehicle is currently operating. The display may present, based on the determined location, the one or more contextual images proximate to the determined position within the cabin of the vehicle to assist the occupant in assuming control of the vehicle when the vehicle is no longer able to autonomously control the operation of the vehicle.
Abstract:
An apparatus may include an ultrasonic receiver array, an ultrasonic transmitter and a control system capable of controlling the ultrasonic transmitter to transmit first ultrasonic waves in a first direction and to simultaneously transmit second ultrasonic waves in a second direction that is opposite the first direction. The control system may be capable of distinguishing first reflected waves from second reflected waves, the first reflected waves corresponding to reflections of the first ultrasonic waves that are received by the ultrasonic receiver array and the second reflected waves corresponding to reflections of the second ultrasonic waves that are received by the ultrasonic receiver array. The control system may be capable of determining first image data corresponding to the first reflected waves and of determining second image data corresponding to the second reflected waves.
Abstract:
An apparatus may include an ultrasonic sensor array and a control system. The control system may be configured to acquire first image data generated by the ultrasonic sensor array corresponding to at least one first reflected ultrasonic wave received by at least a portion of the ultrasonic sensor array from a target object during a first acquisition time window. The control system may be configured to acquire second image data generated by the ultrasonic sensor array corresponding to at least one second reflected ultrasonic wave received by at least a portion of the ultrasonic sensor array from the target object during a second acquisition time window that is longer than the first acquisition time window. The control system may further be configured to initiate an authentication process based on the first image data and the second image data.
Abstract:
A wearable otoscope may be capable of wireless or wired communication with a second device, such as a smart phone. Some dual-ear otoscope implementations may be provided in a headphone-like configuration, which may include a headband attachable to earbuds of the dual-ear otoscope. However, some alternative implementations do not include a headband. At least a portion of the dual-ear otoscope may be a disposable component in some examples. In some implementations, functionality of the dual-ear otoscope (such as an illumination angle of light, imaging functionality, etc.) may be controlled according to commands received from the second device. Some examples may include one or more additional sensors, such as temperature sensors.
Abstract:
Methods and devices are disclosed for managing a resource of a communication device configured to process and communicate medical data in addition to other data. The systems and devices may implement the method, including determining whether to switch to a medical mode based on at least one signal. In response to determining to switch to the medical mode, the communication device may be switched to the medical mode. A resource status associated with a plurality of resources used by the communication device may be weighed against a medical data criticality associated with the medical data managed by the communication device. The method may include allocating a resource of the plurality of resources on a sliding priority scale. The allocating may include allocating a resource of the plurality of resources preferentially to the medical data over the other data.
Abstract:
An authentication process may involve presenting an image on a display device, such as an icon associated with an application, indicating an area for a user to touch. At least partial fingerprint data may be obtained during one or more finger taps or touches in the area. Based on a comparison of the partial fingerprint data and master fingerprint data of the rightful user, a control system may determine whether to invoke a function. Invoking the function may involve authorizing a commercial transaction or unlocking the display device. In some implementations, determining whether to invoke the function may be based on a level of security.
Abstract:
An apparatus may include an ultrasonic sensor array and a control system. The control system may be configured to acquire first image data generated by the ultrasonic sensor array corresponding to at least one first reflected ultrasonic wave received by at least a portion of the ultrasonic sensor array from a target object during a first acquisition time window. The control system may be configured to acquire second image data generated by the ultrasonic sensor array corresponding to at least one second reflected ultrasonic wave received by at least a portion of the ultrasonic sensor array from the target object during a second acquisition time window that is longer than the first acquisition time window. The control system may further be configured to initiate an authentication process based on the first image data and the second image data.
Abstract:
Embodiments of an ultrasonic button and methods for using the ultrasonic button are disclosed. In one embodiment, an ultrasonic button may include an ultrasonic transmitter configured to transmit an ultrasonic wave, a piezoelectric receiver layer configured to receive a reflected wave of the ultrasonic wave, a platen layer configured to protect the ultrasonic transmitter and the piezoelectric receiver layer, a first matching layer configured to match an acoustic impedance of the platen layer with an acoustic impedance of ridges of a finger, and an ultrasonic sensor array configured to detect the finger using the reflected wave.