Abstract:
Methods and devices provide a wireless communications hub device and services enabling remote access to electronic medical or fitness devices in a manner that simplifies device networking. A wireless communication hub device may include a processor and wireless communication transceivers configured to connect to cellular and/or WiFi networks to access a remote server, and wired and/or wireless local networks for connecting to electronic medical or fitness devices. The wireless communication hub device may plug into a power source, connect to an electronic medical or fitness device, and communicate via a second wireless network with an associated server-based service. The system enables discovery of the wireless communication hub device and connected electronic medical or fitness devices. The associated remote server based service platform services may provide drivers for various electronic medical or fitness devices, store and forward data, and provide remote access to the various electronic medical or fitness devices.
Abstract:
A wearable otoscope may be capable of wireless or wired communication with a second device, such as a smart phone. Some dual-ear otoscope implementations may be provided in a headphone-like configuration, which may include a headband attachable to earbuds of the dual-ear otoscope. However, some alternative implementations do not include a headband. At least a portion of the dual-ear otoscope may be a disposable component in some examples. In some implementations, functionality of the dual-ear otoscope (such as an illumination angle of light, imaging functionality, etc.) may be controlled according to commands received from the second device. Some examples may include one or more additional sensors, such as temperature sensors.
Abstract:
A stethoscope system may include an array of sensors, which may include pressure sensors. The array may be implemented in a wearable “patch” that is conformable to a patient's body. The stethoscope system may include a control system that is capable of receiving signals from the array of sensors. The signals may, for example, correspond to measurements from multiple pressure sensors of the array. The control system may be capable of combining signals from multiple pressure sensors to produce combined signals. The control system may be capable of filtering the combined signals to remove, at least in part, breathing signal components and to produce filtered signals. The control system may be capable of determining a correspondence between heart signal components of the filtered signals and corresponding heart valve activity.
Abstract:
A stethoscope system may include an array of sensors, which may include pressure sensors. The array may be implemented in a wearable “patch” that is conformable to a patient's body. The stethoscope system may include a control system that is capable of receiving signals from the array of sensors. The signals may, for example, correspond to measurements from multiple pressure sensors of the array. The control system may be capable of combining signals from multiple pressure sensors to produce combined signals. The control system may be capable of filtering the combined signals to remove, at least in part, breathing signal components and to produce filtered signals. The control system may be capable of determining a correspondence between heart signal components of the filtered signals and corresponding heart valve activity.
Abstract:
Methods and devices provide a wireless communications hub device and services enabling remote access to electronic medical or fitness devices in a manner that simplifies device networking. A wireless communication hub device may include a processor and wireless communication transceivers configured to connect to cellular and/or WiFi networks to access a remote server, and wired and/or wireless local networks for connecting to electronic medical or fitness devices. The wireless communication hub device may plug into a power source, connect to an electronic medical or fitness device, and communicate via a second wireless network with an associated server-based service. The system enables discovery of the wireless communication hub device and connected electronic medical or fitness devices. The associated remote server based service platform services may provide drivers for various electronic medical or fitness devices, store and forward data, and provide remote access to the various electronic medical or fitness devices.
Abstract:
A wearable otoscope may be capable of wireless or wired communication with a second device, such as a smart phone. Some dual-ear otoscope implementations may be provided in a headphone-like configuration, which may include a headband attachable to earbuds of the dual-ear otoscope. However, some alternative implementations do not include a headband. At least a portion of the dual-ear otoscope may be a disposable component in some examples. In some implementations, functionality of the dual-ear otoscope (such as an illumination angle of light, imaging functionality, etc.) may be controlled according to commands received from the second device. Some examples may include one or more additional sensors, such as temperature sensors.