Abstract:
A catalyst and process for the deoxygenation and conversion of bio-derived feedstocks. The catalyst comprises a silica-alumina support having specifically defined physical properties and a molybdenum component but a material absence of nickel. The process involves the processing of a bio-derived feedstock having an oxygen content to yield a conversion product having an exceptional distillation profile and physical properties and a substantially reduced oxygen content.
Abstract:
An ultra-stable catalyst composition for hydroprocessing hydrocarbon feedstocks and a method of making and use of the ultra-stable catalyst composition. The catalyst composition of the invention comprises a calcined mixture made by calcining a formed particle of a mixture comprising an inorganic oxide material, molybdenum trioxide, and a nickel compound; wherein the calcined mixture is further overlaid with a cobalt component and a molybdenum component to thereby provide the catalyst composition.
Abstract:
A self activating catalyst for treating heavy hydrocarbon feedstocks that comprises a calcined particle comprising a co-mulled mixture made by co-mulling inorganic oxide powder, molybdenum trioxide powder, and a nickel compound and then forming the co-mulled mixture into a particle that is calcined to thereby provide the calcined particle. The calcined particle comprises from 1 to 10 weight percent molybdenum and nickel that is present in an amount such that the weight ratio of said nickel-to-molybdenum is less than 0.4. The calcined particle has a pore size distribution that contributes to the unique properties of the catalyst. The calcined particle and catalyst also exhibits a unique Raman spectrum. The self activating catalyst is activated when contacted under suitable process conditions with a heavy residue feedstock having high nickel, vanadium and sulfur concentrations.
Abstract:
Described is a catalyst and process useful in the hydrodesulfurization of a distillate feedstock to manufacture a low-sulfur distillate product. The catalyst comprises a calcined mixture of inorganic oxide material, a high concentration of a molybdenum component, and a high concentration of a Group VIII metal component. The mixture that is calcined to form the calcined mixture comprises molybdenum trioxide in the form of finely divided particles, a Group VIII metal compound, and an inorganic oxide material. The catalyst is made by mixing the aforementioned starting materials and forming therefrom an agglomerate that is calcined to yield the calcined mixture that may be used as the catalyst or catalyst precursor.
Abstract:
A catalyst and its use for selectively desulfurizing sulfur compounds present in an olefin-containing hydrocarbon feedstock to very low levels with minimal hydrogenation of olefins. The catalyst comprises an inorganic oxide substrate containing a nickel compound, a molybdenum compound and optionally a phosphorus compound, that is overlaid with a molybdenum compound and a cobalt compound. The catalyst is further characterized as having a bimodal pore size distribution with a large portion of its total pore volume contained in pores having a diameter less than 250 angstroms and in pores having a diameter greater than 1000 angstroms.
Abstract:
A self-activating catalyst for treating heavy hydrocarbon feedstocks that comprises a calcined particle treated with a sulfoxide compound in the presence of hydrogen. The calcined particle comprises a co-mulled mixture made by co-mulling inorganic oxide powder, molybdenum trioxide powder, and a nickel compound and then forming the co-mulled mixture into a particle that is calcined to thereby provide the calcined particle. The calcined particle comprises from 1 to 10 weight percent molybdenum and nickel that is present in an amount such that the weight ratio of said nickel-to-molybdenum is less than 0.4. The calcined particle has a pore size distribution that contributes to the unique properties of the catalyst. The enhanced self-activating catalyst is used in the hydroprocessing of heavy residue feedstocks that have high nickel, vanadium and sulfur concentrations.
Abstract:
A catalyst and its use for selectively desulfurizing sulfur compounds present in an olefin-containing hydrocarbon feedstock to very low levels with minimal hydrogenation of olefins. The catalyst comprises an inorganic oxide substrate containing a nickel compound, a molybdenum compound and optionally a phosphorus compound, that is overlaid with a molybdenum compound and a cobalt compound. The catalyst is further characterized as having a bimodal pore size distribution with a large portion of its total pore volume contained in pores having a diameter less than 250 angstroms and in pores having a diameter greater than 1000 angstroms.
Abstract:
A self-activating hydroprocessing catalyst for treating heavy hydrocarbon feedstocks is further activated by contacting the self-activating catalyst with steam. The steam may be added to the heavy hydrocarbon feedstock prior to contacting with the self-activating catalyst or may be added to a reactor vessel containing the self-activating catalyst.
Abstract:
A method of making a high activity catalyst composition suitable for use in the hydrodesulfurization of a middle distillate feed, such as diesel fuel, having a high concentration of sulfur, to thereby provide a low sulfur middle distillate product. The method comprises heat treating aluminum hydroxide under controlled temperature conditions thereby converting the aluminum hydroxide to gamma-alumina to give a converted aluminum hydroxide, and controlling the fraction of converted aluminum hydroxide that is gamma-alumina. A catalytic component is incorporated into the converted aluminum hydroxide to provide an intermediate, which is heat treated to provide the high activity catalyst composition. The high activity catalyst composition can suitably be used in the hydrodesulfurization of a middle distillate feed containing a high sulfur concentration.
Abstract:
A catalyst for treating heavy hydrocarbon feedstocks. The catalyst comprises a calcined particle comprising a co-mulled mixture made by co-mulling inorganic oxide powder, molybdenum trioxide powder, and a nickel compound or cobalt compound, or both compounds, and then forming the co-mulled mixture into a particle that is calcined to provide the calcined particle. The calcination is conducted at a temperature such that at least 20% of the pore volume of the calcined particle is in pores of greater than 5,000 Å and less than 70% of the pore volume of the calcined particle is in the pores having a pore size in the range of from 70 to 250 Å.