Abstract:
A method to test an asynchronous finite state machine for faults, the method including disabling state transitions out of a state of the asynchronous finite state machine and inputting test data to the AFSM to trigger a transition from the state to an expected state. The method further including enabling transitions out of the state of the asynchronous finite state machine, and determining whether the asynchronous finite state machine has performed a successful transition to the expected state.
Abstract:
A system includes a multi-conductor bus, a master device coupled to the multi-conductor bus, and at least one slave device coupled to the multi-conductor bus. The multi-conductor bus has a clock line and a data line. The master device is arranged to transmit an address configuration sequence, and the at least one slave device is arranged to configurably determine its own address based on at least one portion of the address configuration sequence. The at least one slave device has a physical address configuration input coupled to either a fixed voltage potential or a changing voltage potential. The at least one slave device is arranged with a first address during a pre-initialization state and arranged with a second address during a post-initialization state. During the post-initialization state, the first address and the second address are a same address when the address configuration sequence represents the first address and the first address and the second address are different addresses when the address configuration sequence does not represent the first address.
Abstract:
An integrated data concentrator, so-called “sensor hub”, for a multi-sensor MEMS system, implements: a first interface module, for interfacing, in a normal operating mode, with a microprocessor through a first communication bus; and a second interface module, for interfacing, in the normal operating mode, with a plurality of sensors through a second communication bus; the sensor hub further implements a pass-through operating mode, distinct from the normal operating mode, in which it sets the microprocessor in direct communication with the sensors, through the first communication bus and the second communication bus. In particular, the sensor hub implements the direct pass-through operating mode in a totally digital manner.
Abstract:
A processor includes a synchronous circuit including a plurality of processing stages, wherein each processing stage includes a selection data bus; and an asynchronous circuit coupled to each selection data bus, wherein the asynchronous circuit includes an asynchronous state machine whose states correspond to a process phase or a plurality of circuits, wherein the asynchronous circuit further includes a selectable delay circuit whose delay is determined by a present state of the asynchronous state machine, and wherein the asynchronous circuit is configured for generating a plurality of processing stage clock signals each having a selectable delay provided by the selectable delay circuit.
Abstract:
A method to test an asynchronous finite state machine for faults, the method including disabling state transitions out of a state of the asynchronous finite state machine and inputting test data to the AFSM to trigger a transition from the state to an expected state. The method further including enabling transitions out of the state of the asynchronous finite state machine, and determining whether the asynchronous finite state machine has performed a successful transition to the expected state.
Abstract:
Disclosed herein is a method including receiving multi-axis accelerometer data representing a potential step taken by a user of an electronic device. The method also includes determining whether the potential step represented by the multi-axis accelerometer data is a false. This determination is made by calculating statistical data from the multi-axis accelerometer data, and applying a decision tree to the statistical data to perform a cross correlation that determines whether the potential step is a false positive. If the potential step is not a false positive, a step detection process is performed to determine whether the potential step is a countable step and, if the potential step is found to be a countable step, a step counter is incremented.
Abstract:
A plurality of sensors provide respective output data rates, with a first sensor that has a highest output data rate, while one or more other sensors have output data rates that are submultiples of the aforesaid highest output data rate. The data signals coming from the sensors are stored in a memory, e.g., a FIFO memory, by storing the data signals of the first sensor at the aforesaid highest output data rate, accompanying storage of the data signals coming from said first sensor with storage of the data signals coming from the sensors as supplied by said other sensors at the aforesaid submultiple output data rates, so that the data signals are stored in the memory according to a repeated pattern that is common to the various sensors.
Abstract:
An integrated data concentrator, so-called “sensor hub”, for a multi-sensor MEMS system, implements: a first interface module, for interfacing, in a normal operating mode, with a microprocessor through a first communication bus; and a second interface module, for interfacing, in the normal operating mode, with a plurality of sensors through a second communication bus; the sensor hub further implements a pass-through operating mode, distinct from the normal operating mode, in which it sets the microprocessor in direct communication with the sensors, through the first communication bus and the second communication bus. In particular, the sensor hub implements the direct pass-through operating mode in a totally digital manner.
Abstract:
A MEMS inertial sensor device has a package and a gyroscopic sensor, an accelerometric sensor, and an ASIC electronic circuit integrated within the package. The ASIC is operatively coupled to the gyroscopic sensor and the accelerometric sensor for supplying at an output a gyroscopic signal indicative of an angular velocity and an acceleration signal indicative of an acceleration acting on the MEMS inertial sensor device. The ASIC is provided with a processing module, which may be of a purely hardware type, for processing jointly the gyroscopic signal and the accelerometric signal and determining a bias value present on the gyroscopic signal.
Abstract:
Disclosed herein is a method including receiving multi-axis accelerometer data representing a potential step taken by a user of an electronic device. The method also includes determining whether the potential step represented by the multi-axis accelerometer data is a false. This determination is made by calculating statistical data from the multi-axis accelerometer data, and applying a decision tree to the statistical data to perform a cross correlation that determines whether the potential step is a false positive. If the potential step is not a false positive, a step detection process is performed to determine whether the potential step is a countable step and, if the potential step is found to be a countable step, a step counter is incremented.