Abstract:
There is provided a three-dimensional image display device, including: a display panel including a plurality of signal lines and a plurality of pixels connected to the plurality of signal lines; a viewpoint divider configured to divide an image displayed by the display panel into a plurality of viewpoints; a parameter storage unit configured to store parameters for an alignment between the display panel and the viewpoint divider; an image processor configured to calculate a rendering pitch according to the alignment between the display panel and the viewpoint divider by using the parameters stored in the parameter storage unit and generate an image signal to perform pixel mapping according to the rendering pitch; and a display panel driver configured to receive the image signal to drive the display panel.
Abstract:
A display device according to some embodiments includes: a substrate; a plurality of common voltage lines positioned on the substrate; a plurality of connection electrodes positioned on a plurality of common voltage lines; an emission layer positioned on the connection electrode; and a common electrode positioned on the emission layer, wherein the emission layer has a plurality of first openings positioned on at least a portion of a plurality of connection electrodes, the common electrode is electrically connected to the connection electrode through a plurality of first openings, and a pitch of a first direction of a plurality of first openings has a range of about 0.1 mm to about 2.5 mm.
Abstract:
An optical modulation device includes following elements. Bus lines are extended in a first direction, wherein each bus line supplies a respective voltage. A first plate includes first lower electrodes extended in a second direction crossing the first direction, wherein a rightmost first lower electrode is connected to a first bus line of the bus lines and a leftmost first lower electrode is connected to a second bus line of the bus lines. A second plate faces the first plate, and includes at least one upper electrode. A liquid crystal layer is positioned between the first plate and the second plate and includes liquid crystal molecules. A first resistor string includes first resistors, wherein each resistor positioned between two adjacent first lower electrodes connects electrically the two adjacent first lower electrodes, causing a voltage drop between the two adjacent first electrodes.
Abstract:
A curved display device includes a curved panel including a plurality of pixels, and an image compensation processor. The image compensation processor is configured to convert a first image signal into a second image signal by scaling the first image signal based on a curvature of the curved panel and a viewing distance between a viewer and the curved panel, map the second image signal onto corresponding pixels of the curved panel, and provide the mapped second image signal to the corresponding pixels of the curved panel.
Abstract:
A display device includes a display panel configured to receive a first-frame image signal for displaying a first-frame image in a first frame. The display panel is further configured to receive a second-frame image signal for displaying a second-frame image in a second frame that immediately follows the first frame such that the display panel appears to display a transition region associated with a boudary between a portion of the first-frame image and a portion of the second-frame image and moving in a moving direction. The display device further includes an optical effect layer and electrode sets. The electrode sets respectively overlap different portions of the optical effect layer and are configured for sequentially starting affecting the different portions of the optical effect layer such that the optical effect layer appears to display a light-blocking section that moves in the moving direction and overlaps the transition region.
Abstract:
A photosensitive composition and a quantum dot-polymer composite pattern formed from the photosensitive composition are disclosed, and the photosensitive composition includes: a plurality of quantum dots; a color filter material including an absorption dye, an absorption pigment, or a combination thereof; a polymer binder; a photopolymerizable monomer having a carbon-carbon double bond; a photoinitiator; and a solvent, wherein in a normalized photoluminescence spectrum of the quantum dot and a normalized ultraviolet-visible absorption spectrum of the color filter material, a photoluminescence peak wavelength (PL peak wavelength) of the quantum dot and a wavelength of maximum absorbance of the color filter material do not overlap with each other, and the color filter material is included in an amount of less than or equal to 1 part by weight per parts by weight of the plurality of quantum dots.
Abstract:
A photosensitive composition and a quantum dot-polymer composite pattern formed from the photosensitive composition are disclosed, and the photosensitive composition includes: a plurality of quantum dots; a color filter material including an absorption dye, an absorption pigment, or a combination thereof; a polymer binder; a photopolymerizable monomer having a carbon-carbon double bond; a photoinitiator; and a solvent, wherein in a normalized photoluminescence spectrum of the quantum dot and a normalized ultraviolet-visible absorption spectrum of the color filter material, a photoluminescence peak wavelength (PL peak wavelength) of the quantum dot and a wavelength of maximum absorbance of the color filter material do not overlap with each other, and the color filter material is included in an amount of less than or equal to 1 part by weight per 10 parts by weight of the plurality of quantum dots.
Abstract:
An organic light emitting diode display according to an exemplary embodiment includes: a substrate; a pixel formed on the substrate and including a pixel area displaying an image and a peripheral area adjacent to the pixel area; an insulating layer at the pixel area and the peripheral area on the substrate; a first electrode at the pixel area on the insulating layer; an organic emission layer on the first electrode and extending to the peripheral area; a second electrode on the organic emission layer and disposed in the pixel area and the peripheral area; an auxiliary electrode in the peripheral area on the substrate and partially exposed by a first opening formed in the insulating layer; and an auxiliary member disposed on the auxiliary electrode and in contact with an upper surface of the auxiliary electrode exposed by the first opening.