Abstract:
Provided is a mask. The mask may include a mask substrate, mask patterns on the mask substrate, frames disposed on an edge of the mask substrate outside the mask patterns, and a pellicle spaced apart from the mask patterns, the pellicle being disposed on the frames, wherein the pellicle includes protection layers each of which has a nanometer thickness.
Abstract:
A pellicle for lithography processes, including extreme ultraviolet (EUV) lithography may mitigate thermal accumulation in a membrane of the pellicle. The pellicle includes a membrane and at least one thermal buffer layer on at least one surface of the membrane. An emissivity of the thermal buffer layer may be greater than an emissivity of the membrane. A carbon content of the thermal buffer layer may be greater than a carbon content of the membrane. Multiple thermal buffer layers may be on separate surfaces of the membrane, and the thermal buffer layers may have different properties. A capping layer may be on at least one thermal buffer layer, and the capping layer may include a hydrogen resistant material. A thermal buffer layer may extend over some or all of a surface of the membrane. A thermal buffer layer may be between at least two membranes.
Abstract:
The present disclosure relates to a 5th (5G) generation or pre-5G communication system for supporting a higher data transmission rate beyond a 4th (4G) generation communication system such as long term evolution (LTE). An operating method of a base station in a wireless communication system may include identifying a resource for transmitting at least one sequence for interference measurement of another base station, based on information received from a management device, and transmitting the at least one sequence through the resource, the information received from the management device may include information of the at least one sequence and the resource, and the information of the at least one sequence and the resource may be generated based on a grouping result of base stations based on an operating frequency.
Abstract:
Provided is a method of manufacturing a pellicle. The method includes preparing a substrate, forming a membrane on the substrate by performing a chemical vapor deposition (CVD) process, separating the membrane from the substrate in a first solvent, rinsing the separated membrane in a second solvent, and transferring the separated membrane to a frame in a third solvent.
Abstract:
The present disclosure relates to a communication technique for converging a 5G communication system for supporting a higher data transfer rate beyond a 4G system with loT technology, and a system therefor. The present disclosure may be applied to intelligent services (for example, smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retail business, security and safety-related services, etc.) on the basis of 5G communication technology and IoT-related technology. The present disclosure relates to a method for assigning transmission resources including an uplink (UL)-dedicated region and a downlink (DL)-dedicated region, the method comprising: a step for identifying a ratio of the DL-dedicated region to the UL-dedicated region; a step for changing the ratio of the DL-dedicated region to the UL-dedicated region by using at least one of a utilization rate and electric field characteristic information of the transmission resources; and a step for assigning the UL-dedicated region and the DL-dedicated region according to the changed ratio of the DL-dedicated region to the UL-dedicated region.
Abstract:
An extreme ultraviolet (EUV) light generation apparatus includes a source supplying unit in a chamber, the source supplying unit including a source material for generation of extreme ultraviolet light, a plasma generator to generate plasma from the source material, an optical unit in the chamber, and at least one protection film adjacent to the optical unit, the at least one protection film including at least one of graphite or graphene.