Abstract:
A control information interpretation method of a terminal and a base station in a mobile communication system, and a terminal and a base station concerning the same, respectively, are provided. The control information interpretation method of a terminal includes receiving, by the terminal, control information including transport block information and antenna port related information; identifying whether a codeword 0 is enabled and a codeword 1 is disabled, or both the codeword 0 and the codeword 1 are enabled based on the transport block information; and interpreting the antenna port related information according to a result of the identification.
Abstract:
A method and apparatus for transmitting/receiving reference signals in Long Term Evolution (LTE) and LTE-Advanced (LTE-A) systems includes determining whether a dedicated reference signal is detected in a current subframe; estimating, if a dedicated reference signal is detected in the current subframe, a data channel using the dedicated reference signal to receive data; and estimating, if no dedicated reference signal is detected in the current subframe, a data channel using a common reference signal detected in the current subframe to receive data. The transmission scheme uses a DeModulation Reference Signal (DM-RS) for channel response estimation. To secure backward compatibility of the LTE-A system, a Common Reference Signal is transmitted in normal subframes.
Abstract:
A method and system for resource allocation is provided. A method includes transmitting, to the terminal, information including first information indicating a set of resource blocks associated with a control channel and second information indicating a number of symbols corresponding to the set of resource blocks by a radio resource control (RRC) message; transmitting, to the terminal, control information including information for downlink data on the control channel identified based on the first information and the second information; and transmitting, to the terminal, the downlink data on a data channel based on the control information. The set of resource blocks includes at least one control channel resource, and wherein a search space for the control channel of the terminal is defined based on an aggregation level, and a number of the at least one control channel resource.
Abstract:
A method for transmitting control information by a base station in a wireless communication system is provided. The method includes determining a precoder to be applied to a resource and a Demodulation Reference Signal (DMRS) port, the resource being used to transmit the control information, and the DMRS port corresponding to the resource and being used to transmit a DMRS, precoding the resource and the DMRS port by using the determined precoder, and transmitting the control information and the DMRS to a user equipment.
Abstract:
A method and apparatus are provided for transmitting and receiving Downlink Control Information (DCI) in a wireless communication system. A method includes generating downlink control information including an antenna port indicator comprising antenna port information and scrambling identity information; and transmitting, to a terminal, the downlink control information and data associated with the downlink control information. The scrambling identity information indicates one of two scrambling sequences, if a number of antenna ports indicated by the antenna port information is one and one transport block is enabled.
Abstract:
A control channel transmission/reception method and apparatus is provided. The base station of the present invention transmits configuration information on a control channel to a terminal, checks an aggregation level for use in transmitting the control channel, maps Demodulation Reference Signal (DMRS) to resource elements in a resource block depending on the aggregation level, determines, when the resource elements of the DMRS correspond to a first resource element set, whether to map the DMRS to resource elements corresponding to a second resource element set in the resource block, and transmits the DMRS and control channel to the terminal according to the determination result.
Abstract:
A method for transmitting feedback information for collaborative transmission in a cellular radio communication system is provided. The method includes receiving, from the base station, collaborative cell information indicating a plurality of collaborative cells, determining at least two preferred collaborative cells among the plurality of collaborative cells, generating feedback information including cell indicators for discriminating between the at least two preferred collaborative cells and the other cell, precoding matrix indicators for the at least two preferred collaborative cells, and channel quality indicators, and transmitting the feedback information via one of a control channel and a data channel.
Abstract:
A method for wireless communication by a terminal, a method for wireless communication by a base station, the terminal, and the base station, are provided. The method for wireless communication by the terminal includes receiving first information comprising a muting subframe interval, a subframe offset, and a muting position of a resource element in a resource block, checking presence of a data in a subframe, determining the resource element to be muted in the subframe based on the muting subframe interval, the subframe offset, and the muting position, if the data is present, and receiving the data on a physical downlink shared channel (PDSCH) based on the result of the determining step.
Abstract:
A method for wireless communication by a terminal, a method for wireless communication by a base station, the terminal, and the base station, are provided. The method for wireless communication by the terminal includes receiving first information comprising a muting subframe interval, a subframe offset, and a muting position of a resource element in a resource block, checking presence of a data in a subframe, determining the resource element to be muted in the subframe based on the muting subframe interval, the subframe offset, and the muting position, if the data is present, and receiving the data on a physical downlink shared channel (PDSCH) based on the result of the determining step.
Abstract:
In legacy systems such as 3rd Generation Partnership Project (3GPP) releases 8 to 10, the control channel is transmitted using the first few Orthogonal Frequency Division Multiplexing (OFDM) symbols in a subframe. The limited control channel capacity will impact the system performance in future releases as more and more User Equipments (UEs) will be scheduled in a subframe with technologies such as MulitUser-Multiple Input Multiple Output (MU-MIMO) and Coordinated Multipoint (CoMP) transmission being enhanced or introduced. A new Enhanced Control CHannel (E-CCH) is necessary to be designed, which will use the resource in the Physical Downlink Shared CHannel (PDSCH) in the legacy systems. The E-CCH will support UE-specific DeModulation Reference Signal (DMRS) based transmission and receiving. However, the configuration of DMRS for E-CCH is necessary to be known to UE in prior. This invention discloses multiple methods in which DMRS is configured for E-CCHs and respective eNB and UE behaviors.