Abstract:
A semiconductor device includes a semiconductor substrate including a plurality of active areas, a bit line crossing the plurality of active areas, a direct contact connecting a first active area of the plurality of active areas with the bit line, an insulating spacer covering a side wall of the bit line and extending at a level lower than a level of an upper surface of the semiconductor substrate, a contact pad connected with a side wall of a second active area of the plurality of active areas, which neighbors the first active area, a first insulating pattern defining a contact hole exposing the insulating spacer and the contact pad, and a buried contact connected with the contact pad and filling the contact hole.
Abstract:
Provided is a method of manufacturing a semiconductor device. The method includes forming isolated contact filling portions and an etch control portion, the isolated contact filling portions filling contact holes defined in a support layer and are spaced apart from each other in a first direction and a second direction perpendicular to the first direction and the etch control layer surrounding the isolated contact filling portions, forming an interconnection layer on the isolated contact filling portions and the etch control portion, and forming interconnection patterns by photo-etching the interconnection layer, the isolated contact patterns, and the etch control portion, the interconnection patterns being relatively narrow in the first direction and relatively wide in the second direction.
Abstract:
A semiconductor device includes: a first interconnection line and a second interconnection line which extend apart from each other on a first plane at a first level on a substrate; a bypass interconnection line that extends on a second plane at a second level on the substrate; and a plurality of contact plugs for connecting the bypass interconnection line to the first interconnection line and the second interconnection line. A method includes forming a bypass interconnection line spaced apart from a substrate and forming on a same plane a plurality of interconnection lines connected to the bypass interconnection line via a plurality of contact plugs.
Abstract:
A semiconductor device includes a substrate including an active region, a plurality of conductive line structures separate from the substrate, a plurality of contact plugs between the plurality of conductive line structures, a plurality of landing pads connected to a corresponding contact plug of the plurality of contact plugs, a landing pad insulation pattern between the plurality of landing pads, and a first insulation spacer between the landing pad insulation pattern and first conductive line structures from among the plurality of conductive line structures.
Abstract:
Semiconductor devices include a substrate having a target connection region; a conductive line having a first side wall spaced apart from the substrate by at least an insulating layer, and a conductive plug structure electrically connecting the conductive line to the target connection region, wherein the conductive plug includes a first conductive plug having a first side wall, a bottom surface contacting the target connection region of the substrate, and a second side wall facing the first side wall of the conductive line, and a second conductive plug between the conductive line and the first conductive plug. The second conductive plug contacts both the first side wall of the conductive line and the second side wall of the first conductive plug.
Abstract:
A semiconductor memory device includes a first pair of pillars extending from a substrate to form vertical channel regions, the first pair of pillars having a first pillar and a second pillar adjacent to each other, the first pillar and the second pillar arranged in a first direction, a first bit line disposed on a bottom surface of a first trench formed betweenthe first pair of pillars, the first bit line extending in a second direction that is substantially perpendicular to the first direction, a first contact gate disposed on a first surface of the first pillar with a first gate insulating layer therebetween, a second contact gate disposed on a first surface of the second pillar with a second gate insulating layer therebetween, the first surface of the first pillar and the first surface of the second pillar face opposite directions, and a first word line disposed on the first contact gate and a second word line disposed on the second contact gate, the word lines extending in the first direction.