Abstract:
A memory device performing an internal copy operation is provided. The memory device may receive a source address, a destination address, and page size information together with an internal copy command, compares the source address with the destination address, and performs an internal copy operation. The internal copy operation may be an internal block copy operation, an inter-bank copy operation, or an internal bank copy operation. The internal copy operation may be performed with respect to one-page data, half-page data, or quarter-page data, based on the page size information. The memory device may output as a flag signal a copy-done signal indicating that the internal copy operation has been completed.
Abstract:
A metal-air battery including: a negative electrode metal layer; a negative electrode electrolyte layer disposed on the negative electrode metal layer; a positive electrode layer disposed on the negative electrode electrolyte layer, the positive electrode layer including a positive electrode material which is capable of using oxygen as an active material; and a gas diffusion layer disposed on the positive electrode layer, wherein the negative electrode electrolyte layer is between the negative electrode metal layer and the positive electrode layer; wherein the negative electrode metal layer, the negative electrode electrolyte layer, and the positive electrode layer are disposed on the gas diffusion layer so that the positive electrode layer contacts a lower surface and an opposite upper surface of the gas diffusion layer, and wherein one side surface of the gas diffusion layer is exposed to an outside.
Abstract:
A semiconductor device includes a substrate including a fin-shaped active region that protrudes from the substrate, a gate insulating film covering a top surface and both side walls of the fin-shaped active region, a gate electrode on the top surface and the both side walls of the fin-shaped active region and covering the gate insulating film, one pair of insulating spacers on both side walls of the gate electrode, one pair of source/drain region on the fin-shaped active region and located on both sides of the gate electrode, and a lower buffer layer between the fin-shaped active region the source/drain region. The source/drain regions include a compound semiconductor material including atoms from different groups. The lower buffer layer includes a compound semiconductor material that is amorphous and includes atoms from different groups.
Abstract:
A lithium air battery including an anode for intercalating/deintercalating lithium ions; a cathode having oxygen as a cathode active material, a lithium ion conductive solid electrolyte membrane disposed between the anode and the cathode; and an electrolyte, wherein the electrolyte is disposed between the lithium ion conductive solid electrolyte membrane and the cathode, and wherein the electrolyte includes at least one compound selected from a compound represented by Formula 1 and a copolymer including a repeating unit represented by Formula 2 as an additive: wherein in Formulae 1 and 2, groups CY1, CY2, a, b, c, b, R1 to R18, and variables t, u, and v are defined in the specification.
Abstract:
A flexible solid electrolyte includes a first inorganic protective layer, an inorganic-organic composite electrolyte layer including an inorganic component and an organic component, and a second inorganic protective layer, where the inorganic-organic composite electrolyte layer is disposed between the first inorganic protective layer and the second inorganic protective layer, and the inorganic component and the organic component collectively form a continuous ion conducting path.
Abstract:
A metal-air battery including: a negative electrode metal layer; a negative electrode electrolyte layer disposed on the negative electrode metal layer; a positive electrode layer disposed on the negative electrode electrolyte layer, the positive electrode layer comprising a positive electrode material which is capable of using oxygen as an active material; and a gas diffusion layer disposed on the positive electrode layer, wherein the negative electrode electrolyte layer is between the negative electrode metal layer and the positive electrode layer; wherein the negative electrode metal layer, the negative electrode electrolyte layer, and the positive electrode layer are disposed on the gas diffusion layer so that the positive electrode layer contacts a lower surface and an opposite upper surface of the gas diffusion layer, and wherein one side surface of the gas diffusion layer is exposed to an outside.
Abstract:
A semiconductor device includes a substrate including a fin-shaped active region that protrudes from the substrate, a gate insulating film covering a top surface and both side walls of the fin-shaped active region, a gate electrode on the top surface and the both side walls of the fin-shaped active region and covering the gate insulating film, one pair of insulating spacers on both side walls of the gate electrode, one pair of source/drain region on the fin-shaped active region and located on both sides of the gate electrode, and a lower buffer layer between the fin-shaped active region the source/drain region. The source/drain regions include a compound semiconductor material including atoms from different groups. The lower buffer layer includes a compound semiconductor material that is amorphous and includes atoms from different groups.
Abstract:
A dipole antenna module and an electronic apparatus include an antenna element, a power feeder formed at an end of the antenna element and connected to a circuit board to process an antenna signal through a cable, and a ground part to ground a ground of the cable such that the ground part keeps a preset gap from the antenna element and is grounded to a conductor of the circuit board.
Abstract:
A solid ion conductor including a garnet oxide represented by Formula 1: L5+x+2y(Dy,E3-y)(Mez,M2-z)Od Formula 1 wherein L is at least one of a monovalent cation or a divalent cation, D is a monovalent cation, E is a trivalent cation, Me and M are each independently a trivalent, tetravalent, pentavalent, or a hexavalent cation, 0
Abstract translation:包括由式1表示的石榴石氧化物的固体离子导体:L5 + x + 2y(Dy,E3-y)(Mez,M2-z)Od式1其中L是一价阳离子或二价阳离子中的至少一种, D是一价阳离子,E是三价阳离子,Me和M各自独立地是三价,四价,五价或六价阳离子,0
Abstract:
A metal-air battery including: a negative electrode metal layer; a negative electrode electrolyte layer disposed on the negative electrode metal layer; a positive electrode layer disposed on the negative electrode electrolyte layer, the positive electrode layer comprising a positive electrode material which is capable of using oxygen as an active material; and a gas diffusion layer disposed on the positive electrode layer, wherein the negative electrode electrolyte layer is between the negative electrode metal layer and the positive electrode layer; wherein the negative electrode metal layer, the negative electrode electrolyte layer, and the positive electrode layer are disposed on the gas diffusion layer so that the positive electrode layer contacts a lower surface and an opposite upper surface of the gas diffusion layer, and wherein one side surface of the gas diffusion layer is exposed to an outside.