Abstract:
Methods of forming a dielectric layer are provided. The methods may include introducing oxygen radicals and organic silicon precursors into a chamber to form a preliminary dielectric layer on a substrate. Each of the organic silicon precursors may include a carbon bridge and a porogen such that the preliminary dielectric layer may include carbon bridges and porogens. The methods may also include removing at least some of the porogens from the preliminary dielectric layer to form a porous dielectric layer including the carbon bridges.
Abstract:
A semiconductor device includes a substrate including an active pattern, a first interlayer dielectric layer on the substrate, the first interlayer dielectric layer including a recess on an upper portion thereof, and a lower connection line in the first interlayer dielectric layer, the lower connection line being electrically connected to the active pattern, and the lower connection line including a conductive pattern, the recess of the first interlayer dielectric layer selectively exposing a top surface of the conductive pattern, and a barrier pattern between the conductive pattern and the first interlayer dielectric layer, the first interlayer dielectric layer covering a top surface of the barrier pattern.
Abstract:
A semiconductor device including a first interlayer insulating film; a conductive pattern in the first interlayer insulating film; a resistance pattern on the conductive pattern; an upper etching stopper film spaced apart from the resistance pattern, extending in parallel with a top surface of the resistance pattern, and including a first metal; a lower etching stopper film on the conductive pattern, extending in parallel with a top surface of the first interlayer insulating film, and including a second metal; and a second interlayer insulating film on the upper etching stopper film and the lower etching stopper film, wherein a distance from a top surface of the second interlayer insulating film to a top surface of the upper etching stopper film is smaller than a distance from the top surface of the second interlayer insulating film to a top surface of the lower etching stopper film.
Abstract:
Disclosed is a semiconductor device comprising a substrate, a first dielectric layer on the substrate, a first lower conductive line in the first dielectric layer, an etch stop layer on the first dielectric layer, a via-structure that penetrates the etch stop layer and connects to the first lower conductive line, a second dielectric layer on the etch stop layer, and an upper conductive line that penetrates the second dielectric layer and connects to the via-structure. The first dielectric layer includes a dielectric pattern at a level higher than a top surface of the first lower conductive line. The upper conductive line is in contact with a top surface of the etch stop layer. The etch stop layer has at an upper portion a rounded surface in contact with the via-structure.
Abstract:
A semiconductor device includes a first insulating interlayer on a first region of a substrate and a second insulating interlayer on a second region of the substrate, a plurality of first wiring structures on the first insulating interlayer, the first wiring structures being spaced apart from each other, a plurality of second wiring structures filling a plurality of trenches on the second insulating interlayer, respectively, an insulation capping structure selectively on a surface of the first insulating interlayer between the first wiring structures and on a sidewall and an upper surface of each of the first wiring structures, the insulation capping structure including an insulating material, a third insulating interlayer on the first and second wiring structures, and an air gap among the first wiring structures under the third insulating interlayer.
Abstract:
A semiconductor device includes a substrate including an active pattern, a first interlayer dielectric layer on the substrate, the first interlayer dielectric layer including a recess on an upper portion thereof, and a lower connection line in the first interlayer dielectric layer, the lower connection line being electrically connected to the active pattern, and the lower connection line including a conductive pattern, the recess of the first interlayer dielectric layer selectively exposing a top surface of the conductive pattern, and a barrier pattern between the conductive pattern and the first interlayer dielectric layer, the first interlayer dielectric layer covering a top surface of the barrier pattern.
Abstract:
A method for fabricating semiconductor device may include forming a source/drain pattern on a fin-type pattern, forming an etch stop film and an interlayer insulating film on the source/drain pattern, forming a contact hole in the interlayer insulating film, forming a sacrificial liner along a sidewall and a bottom surface of the contact hole, performing an ion implantation process while the sacrificial liner is present, removing the sacrificial liner and forming a contact liner along the sidewall of the contact hole, and forming a source/drain contact on the contact liner. The ion implantation process may include implant impurities into the source/drain pattern. The source/drain contact may be connected to the source/drain pattern.
Abstract:
A semiconductor device includes a substrate including an active pattern, a first interlayer dielectric layer on the substrate, the first interlayer dielectric layer including a recess on an upper portion thereof, and a lower connection line in the first interlayer dielectric layer, the lower connection line being electrically connected to the active pattern, and the lower connection line including a conductive pattern, the recess of the first interlayer dielectric layer selectively exposing a top surface of the conductive pattern, and a barrier pattern between the conductive pattern and the first interlayer dielectric layer, the first interlayer dielectric layer covering a top surface of the barrier pattern.
Abstract:
Disclosed is a semiconductor device comprising a substrate, a first dielectric layer on the substrate, a first lower conductive line in the first dielectric layer, an etch stop layer on the first dielectric layer, a via-structure that penetrates the etch stop layer and connects to the first lower conductive line, a second dielectric layer on the etch stop layer, and an upper conductive line that penetrates the second dielectric layer and connects to the via-structure. The first dielectric layer includes a dielectric pattern at a level higher than a top surface of the first lower conductive line. The upper conductive line is in contact with a top surface of the etch stop layer. The etch stop layer has at an upper portion a rounded surface in contact with the via-structure.
Abstract:
A semiconductor device includes a substrate including an active pattern, a first interlayer dielectric layer on the substrate, the first interlayer dielectric layer including a recess on an upper portion thereof, and a lower connection line in the first interlayer dielectric layer, the lower connection line being electrically connected to the active pattern, and the lower connection line including a conductive pattern, the recess of the first interlayer dielectric layer selectively exposing a top surface of the conductive pattern, and a barrier pattern between the conductive pattern and the first interlayer dielectric layer, the first interlayer dielectric layer covering a top surface of the barrier pattern.