Abstract:
In one aspect of the disclosure, a semiconductor package is disclosed. The semiconductor package includes a lead frame. A semiconductor die is attached to a first side of the lead frame. A protective shell covers at least a first portion of the first surface of the semiconductor die. The protective shell comprises of ink residue. A layer of molding compound covers an outer surface of the protective shell and exposed portion of the first surface of the semiconductor die. A cavity space is within an inner space of the protective shell and the first portion of the top surface of the semiconductor die.
Abstract:
An integrated circuit (“IC”) package comprising an IC die having a top surface and a bottom surface, an elongate member having opposite first and second end portions and a mid portion. The mid portion is positioned proximate the top surface of the IC die. The IC package also includes an encapsulant block having a top surface, a bottom surface and opposite first and second lateral side surfaces. The encapsulant block encapsulates the IC die and the elongate member. Either or both of the first and second end portions of the elongate member are exposed.
Abstract:
An integrated circuit (“IC”) package comprising an IC die having a top surface and a bottom surface, an elongate member having opposite first and second end portions and a mid portion. The mid portion is positioned proximate the top surface of the IC die. The IC package also includes an encapsulant block having a top surface, a bottom surface and opposite first and second lateral side surfaces. The encapsulant block encapsulates the IC die and the elongate member. Either or both of the first and second end portions of the elongate member are exposed.
Abstract:
An integrated circuit (“IC”) package comprising an IC die having a top surface and a bottom surface, an elongate member having opposite first and second end portions and a mid portion. The mid portion is positioned proximate the top surface of the IC die. The IC package also includes an encapsulant block having a top surface, a bottom surface and opposite first and second lateral side surfaces. The encapsulant block encapsulates the IC die and the elongate member. Either or both of the first and second end portions of the elongate member are exposed.
Abstract:
A method for fabricating packaged semiconductor devices (100) with an open cavity (110a) in panel format; placing (process 201) on an adhesive carrier tape a panel-sized grid of metallic pieces having a flat pad (230) and symmetrically placed vertical pillars (231); attaching (process 202) semiconductor chips (101) with sensor systems face-down onto the tape; laminating (process 203) and thinning (process 204) low CTE insulating material (234) to fill gaps between chips and grid; turning over (process 205) assembly to remove tape; plasma-cleaning assembly front side, sputtering and patterning (process 206) uniform metal layer across assembly and optionally plating (process 209) metal layer to form rerouting traces and extended contact pads for assembly; laminating (process 212) insulating stiffener across panel; opening (process 213) cavities in stiffener to access the sensor system; and singulating (process 214) packaged devices by cutting metallic pieces.
Abstract:
In one aspect of the disclosure, a semiconductor package is disclosed. The semiconductor package includes a lead frame. A semiconductor die is attached to a first side of the lead frame. A protective shell covers at least a first portion of the first surface of the semiconductor die. The protective shell comprises of ink residue. A layer of molding compound covers an outer surface of the protective shell and exposed portion of the first surface of the semiconductor die. A cavity space is within an inner space of the protective shell and the first portion of the top surface of the semiconductor die.
Abstract:
A method for fabricating packaged semiconductor devices (100) with an open cavity (110a) in panel format; placing (process 201) on an adhesive carrier tape a panel-sized grid of metallic pieces having a flat pad (230) and symmetrically placed vertical pillars (231); attaching (process 202) semiconductor chips (101) with sensor systems face-down onto the tape; laminating (process 203) and thinning (process 204) low CTE insulating material (234) to fill gaps between chips and grid; turning over (process 205) assembly to remove tape; plasma-cleaning assembly front side, sputtering and patterning (process 206) uniform metal layer across assembly and optionally plating (process 209) metal layer to form rerouting traces and extended contact pads for assembly; laminating (process 212) insulating stiffener across panel; opening (process 213) cavities in stiffener to access the sensor system; and singulating (process 214) packaged devices by cutting metallic pieces.
Abstract:
An integrated circuit (“IC”) package comprising an IC die having a top surface and a bottom surface, an elongate member having opposite first and second end portions and a mid portion. The mid portion is positioned proximate the top surface of the IC die. The IC package also includes an encapsulant block having a top surface, a bottom surface and opposite first and second lateral side surfaces. The encapsulant block encapsulates the IC die and the elongate member. Either or both of the first and second end portions of the elongate member are exposed.