Abstract:
A mounting device comprises a substrate stage, a mounting head, an elevating unit, a recognition mechanism, and a control unit. The recognition mechanism acquires position information about a chip recognition mark and a substrate recognition mark using an imaging unit. The control unit calculates an amount of positional deviation between a chip component and a substrate from the position information about the chip recognition mark and the substrate recognition mark, and performs alignment by driving the mounting head and/or the substrate stage according to the amount of the positional deviation. The chip component and the substrate are brought closer with each other and the alignment is performed in a state in which the imaging unit simultaneously images the chip recognition mark and the substrate recognition mark within a depth of field, after which the chip component and the substrate are brought into close contact with each other.
Abstract:
A mounting device mounts a chip component having a chip recognition mark and a substrate having a substrate recognition mark. An attachment tool has transparency and has a tool recognition mark. The attachment tool holds a surface of the chip component opposite to a surface having the chip recognition mark. A chip position recognition unit simultaneously acquires position information of the chip recognition mark and of the tool recognition mark. The substrate position recognition unit acquires position information of the substrate recognition mark and of the tool recognition mark. A control unit moves a substrate stage holding the substrate or the attachment tool in the in-plane direction of the substrate on the basis of information obtained by the chip position recognition unit and by the substrate position recognition unit to perform alignment between the chip component and the substrate.
Abstract:
A mounting device includes a thermocompression bonding head, a pressure reduction mechanism, and a resin sheet feed mechanism. The thermocompression bonding head is configured to heat a semiconductor chip while holding the semiconductor chip and to bond the semiconductor chip to a joined piece by compression. The thermocompression bonding head has a suction hole in a face that holds the semiconductor chip. The pressure reduction mechanism communicates with the suction hole and is configured to reduce pressure inside the suction hole. The resin sheet feed mechanism is configured to supply a resin sheet between the thermocompression bonding head and the semiconductor chip. An electrode that protrudes from a top face of the semiconductor chip is bonded by thermocompression after being embedded in the resin sheet.
Abstract:
A three-dimensional mounting method for successively laminating N number of upper-layer joining materials includes positioning a first upper-layer joining material relative to a lowermost-layer joining material by recognizing an alignment position of the lowermost-layer joining material and a lower face alignment position of the first upper-layer joining material by a two-field image recognition unit, storing positional coordinates of the alignment position of the lowermost-layer joining material, positioning an (n+1)-th upper-layer joining material relative to an n-th upper-layer joining material by recognizing an upper face alignment position of the n-th upper-layer joining material and a lower face alignment position of the (n+1)-th upper-layer joining material, storing positional coordinates of the upper face alignment position of the n-th upper-layer joining material, recognizing an upper face alignment position of the N-th uppermost-layer joining material, and storing positional coordinates of the upper face alignment position of the N-th uppermost-layer joining material.