摘要:
Described is a method for manufacturing semiconductor devices which includes a heat treating process for heating and cooling semiconductor substrates mounted on a boat at a predetermined pitch according to a predetermined temperature profile, in order to flatten the surface of each semiconductor substrate by reflowing an insulating film containing impurities, for example, a BPSG film formed on the substrate. In the heat treating process, one of the control factors which affects the formation of grains or particles due to the impurities contained in the insulating film is set so as to prevent the impurities from generating grains or particles during the heat treatment. Also disclosed is a method of preventing the generation of grains or particles by widening the pitch of the mounted substrates.
摘要:
A DRAM cell transistor formed on a silicon substrate comprises a first BPSG film, a silicon oxide film as a supporting film laid thereover, a storage node including a contact portion filling a contact hole extended through the silicon oxide film and the first BPSG film, an oxidized silicon nitride film as a capacitor insulating film, and a plate electrode. There may be further provided a second BPSG film thereover. Even if the first BPSG film at a lower level is caused to reflow by a process for oxidizing the silicon nitride film for formation of the oxidized silicon nitride film as the capacitor insulating film or a process for ref lowing the second BPSG film, the silicon oxide film as the supporting film applies to the capacitor insulating film a stress against the deformation thereof and hence, the oxidized silicon nitride film free from wrinkle or cracks is provided as the capacitor insulating film. Thus, a semiconductor device free from wrinkle or cracks in the nitride film associated with thermal history and a process for fabrication of the same can be offered, even though the nitride film is laid over the insulating film having a reflowable property.
摘要:
An input/output circuit device includes a first transistor which is formed at a substrate, a first gate of which receives an input signal, one of a first source and drain of which is connected to a first power supply terminal, and the other of the first source and drain of which is connected to an internal node; and a second transistor which is formed at the substrate, a second gate of which is connected to a second power supply terminal, one of a second source and drain of which is connected to an input/output node, and the other of the second source and drain of which is connected to the internal node. The substrate of the second transistor has an electrically floating potential.
摘要:
A single evaluation portion is formed by disposing a plurality of MIS transistors used for evaluation having substantially the same structure as that of an actually used MIS transistor. In the evaluation portion, the respective source regions, drain regions, and gate electrodes of the MIS transistors used for evaluation are electrically connected in common to a source pad, a drain pad, and a gate pad, respectively. If the effective gate width of the single evaluation portion exceeds a given value, variations in characteristics evaluated by the evaluation portion approach variations in the characteristics of the entire semiconductor device. The accuracy of evaluating the characteristics of the semiconductor device can thus be improved by using the evaluation portion.
摘要:
An NMIS gate implantation layer is generated by a method in which mask data of a P-type well implantation layer are added to mask data obtained by subtracting mask data of an NMIS-SD implantation layer and PMIS-SD implantation layer from mask data of an N-type well implantation layer. In a CMOS device fabricating process, ions are implanted into a polysilicon film by using the NMIS gate implantation layer, resulting in reduction in the total numbers of PN junctions and non-doped regions in a gate polysilicon film.
摘要:
Formed in a second interlayer dielectric are a first contact hole and a second contact hole. The first and second contact holes each extend to a first-level interconnect line. Tungsten is formed on the entirety of a substrate to form a first plug, a second plug, and a tungsten layer. A silicon oxide layer is formed. Thereafter, a patterning process is carried out to form a second-level interconnect line which is connected with the first plug and a top protective layer, and the top of the second plug remains exposed. A sidewall is formed on the side surfaces of the second-level interconnect line and the top protective layer. Subsequently, a third-level interconnect line, which is connected with the exposed second plug, is formed. Such arrangement not only reduces the number of contact hole formation masks, it also cuts down the number of fabrication steps. Further, the aspect ratio of the second contact hole becomes lower thereby achieving highly reliable semiconductor devices.
摘要:
A semiconductor memory device includes a capacitor and an insulating separation area in a trench formed around a switching transistor, with a storage electrode of the capacitor being sandwiched between an upper and a lower cell plate electrode to reduce leakage current due to the parasitic MOS transistor effect in the trench sidewall along the channel in the switching transistor and leakage current due to the gate-controlled diode effect in the trench sidewall. Also, a method is disclosed for manufacturing such semiconductor memory device.
摘要:
An input/output circuit device includes a first transistor which is formed at a substrate, a first gate of which receives an input signal, one of a first source and drain of which is connected to a first power supply terminal, and the other of the first source and drain of which is connected to an internal node; and a second transistor which is formed at the substrate, a second gate of which is connected to a second power supply terminal, one of a second source and drain of which is connected to an input/output node, and the other of the second source and drain of which is connected to the internal node. The substrate of the second transistor has an electrically floating potential.