摘要:
A flow sensor includes a first heating portion, provided at a first position in a flow of a fluid, which heats the fluid and outputs a voltage in response to a temperature of the first position. A second heating portion, provided at a second, downstream position in the flow of the fluid, heats the fluid and outputs a voltage in response to a temperature of the second position, the first position and the second position being spaced from each other in a direction parallel to the flow of the fluid. An intermediate heater, provided between the first heating portion and the second heating portion, heats the fluid at an intermediate position between the first position and the second position.
摘要:
A thin-film microstructure sensor includes a substrate having an insulation layer. A thin-film platinum temperature-sensitive resistor is provided on the insulation layer of the substrate, the thin-film platinum temperature-sensitive resistor comprising a platinum layer, the platinum layer having a maximum crystal grain size above a reference grain size of 800 Å. The thin-film platinum temperature-sensitive resistor is formed by a sputtering process to provide a temperature coefficient of resistance TCR above a reference TCR level of 3200 ppm.
摘要:
A thin-film microstructure sensor includes a substrate having an insulation layer. A thin-film platinum temperature-sensitive resistor is provided on the insulation layer of the substrate, the thin-film platinum temperature-sensitive resistor comprising a platinum layer, the platinum layer having a maximum crystal grain size above a reference grain size of 800 .ANG.. The thin-film platinum temperature-sensitive resistor is formed by a sputtering process to provide a temperature coefficient of resistance TCR above a reference TCR level of 3200 ppm.
摘要:
A method of calibrating a zero point of a flow sensor includes the steps of detecting a transition of output of the flow sensor caused in response to a shut down of a fluid, and adjusting the zero point of a characteristic curve representing the output of the flow sensor and a flow rate, such that the indicated flow rate is zero immediately after the transition of the flow sensor output.
摘要:
A flow sensor eliminates turbulence of fluid flow due to a structure of the temperature detecting portion so that a temperature of the temperature detecting portions does not fluctuate due to the turbulence of the fluid. The flow sensor is formed on a substrate. Each of a first temperature detecting portion and a second temperature detecting portion has a heating function and a temperature detecting function, and are arranged along a direction of flow of the fluid. A supporting portion is formed on the substrate for supporting the first and second temperature detecting portions thereon. The supporting portion does not have a side surface facing substantially in the direction of flow of the fluid. A side surface of the supporting portion is protected by a guard portion formed along the side surface.
摘要:
An optical deflector includes a plurality of piezoelectric unimorph oscillating bodies (210a to 210d) that cause a reflecting plate (1) to oscillate rotationally, centering upon a pair of flexible support units (2a and 2b). The optical deflector forms a single structure of the oscillating plates (23a to 23b), the reflecting plate (1), the flexible support units (2a and 2b), and a support body (9), by connecting one set of the terminals of the oscillating plates (23a to 23d) of the suite of piezoelectric unimorph oscillating bodies (210a to 210d) to the flexible support units (2a and 2b), and connecting the other set of terminals to the support body (9). Furthermore, the plurality of piezoelectric unimorph oscillating bodies (210a to 210d) each respectively comprise a plurality of parallel oscillating bodies (23a1 to 23a-3, 23b-1 to 23b-3, 23c-1 to 23c-3), and (23d-1 to 23d-3), and a suite of parallel actuators (28a-1 to 28a-3, 28c-1 to 28c-3, and 28d-1 to 28d-3).
摘要:
The present invention provides a deflection mirror including a mirror substrate having a mirror face that reflects a light, a beam, and a supporting member that supports the mirror substrate through the beam. A movable electrode is formed at a free side of the mirror substrate. A fixed electrode is operably linked through the movable electrode at a gap that is formed in the supporting member. The mirror substrate is driven by electrostatic force between the movable electrode and the fixed electrode and vibrates centering of the beam. An end of at least one of the fixed electrode and the movable electrode is smaller in the thickness direction than the other end.
摘要:
A functional element package includes a silicon substrate with a functional element having one of a mobile portion and a sensor thereon; a seal member being bonded with the silicon substrate to form an airtightly sealed space therein, and including a step portion in its height direction; a first wiring portion being connected with the functional element and extending from the airtightly sealed space to an outside thereof; a second wiring portion being different from the first wiring portion and extending from the step portion to an upper surface of the seal member; and a bump on the second wiring portion, in which the first wiring portion is bent towards the airtightly sealed space and connected via a photoconductive member with the second wiring portion on the step portion.
摘要:
An ink jet head and a method of producing the same are disclosed. Use is made of a sufficiently thick single crystal at the time of anodic bonding, so that a vibration plate is free from deformation without resorting to any special short-circuit electrode.
摘要:
A device including a first substrate in which a functional element and an electrode are formed; a second substrate in which a through electrode is formed; a joining material that joins the first substrate and the second substrate while reserving a predetermined space between the functional element and the second substrate; and a conductive material that electrically connects the electrode to the through electrode. Here, the joining material is harder than the conductive material, and the joining material is electrically less conductive than the conductive material.