Abstract:
A system for reducing ammonia in exhaust gas generated from a lean burn internal combustion engine includes an oxidation catalyst, a selective reduction catalyst (SCR), a cooling unit, and a three-way catalyst. Exhaust gas generated by the engine passes through the oxidation catalyst to oxidize carbon monoxide from the exhaust gas to form carbon dioxide. Nitrous oxide (NOx) compounds in the exhaust gas are reduced in the SCR to form nitrogen and water. The exhaust gas is then cooled in a cooling unit and then passed over the three-way catalyst. The three-way catalyst causes ammonia in the cooled exhaust stream to react to form less harmful compounds, such as nitrogen and water.
Abstract:
A system for reducing ammonia in exhaust gas generated from a lean burn internal combustion engine includes an oxidation catalyst, a selective reduction catalyst (SCR), a cooling unit, and a three-way catalyst. Exhaust gas generated by the engine passes through the oxidation catalyst to oxidize carbon monoxide from the exhaust gas to form carbon dioxide. Nitrous oxide (NOx) compounds in the exhaust gas are reduced in the SCR to form nitrogen and water. The exhaust gas is then cooled in a cooling unit and then passed over the three-way catalyst. The three-way catalyst causes ammonia in the cooled exhaust stream to react to form less harmful compounds, such as nitrogen and water.
Abstract:
An assembly and method for reducing nitrogen oxides, carbon monoxide and hydrocarbons in exhausts of internal combustion engines, wherein the exhaust is acted upon in a first stage catalytic converter. A first portion of the first stage catalytic converter output is cooled and a second portion of the catalytic converter output is not cooled. The cooled and not cooled exhausts are united and directed to a second stage catalytic converter. Air is injected into a selected one of (1) the not cooled exhaust prior to the juncture thereof with the cooled exhaust, and (2) the combined cooled and not cooled exhausts after the juncture thereof.
Abstract:
An assembly and method for reducing nitrogen oxides, carbon monoxide and hydrocarbons in exhausts of internal combustion engines, wherein the exhaust is acted upon in a first stage catalytic converter. A first portion of the first stage catalytic converter output is cooled and a second portion of the catalytic converter output is not cooled. The cooled and not cooled exhausts are united and directed to a second stage catalytic converter. Air is injected into a selected one of (1) the not cooled exhaust prior to the juncture thereof with the cooled exhaust, and (2) the combined cooled and not cooled exhausts after the juncture thereof.