Abstract:
An exhaust aftertreatment system includes a first stage catalytic converter, a second stage catalytic converter, and a conduit extending from the first stage catalytic converter to the second stage catalytic converter. The conduit passes through an exhaust gas intercooler, between the first and second stage catalytic converts, that reduces the temperature of the exhaust to about 300° F. to about 500° F. Air is ejected into the exhaust conduit to increase the oxygen concentration in the exhaust before it passes through the second stage catalytic converter. The air can be ejected from an air ejection conduit that extends to an engine charger compressor or a compressed air conduit that extends from the engine charger compressor, such as a turbo charger and/or a supercharger, to the engine. A gas particulate filter can be disposed in the exhaust conduit or it can be integrated with the second stage catalytic converter, for example as a catalyzed gas particulate filter.
Abstract:
An exhaust aftertreatment system includes a first catalytic converter, an oxidation catalyst including a storage catalyst, an air injector, and a cooling unit. The exhaust aftertreatment system is fluidly coupled to an output of a spark-ignited internal combustion engine that operates in the rich regime during acceleration and the lean regime during deceleration. In one aspect, the storage catalyst stores ammonia produced while the engine operates in the rich regime. The stored ammonia reacts with nitrogen oxide compounds produced when the engine operates in the lean regime. In another aspect, the nitrogen oxide compounds react with ammonia produced while the engine operates in the rich regime.
Abstract:
An exhaust aftertreatment system includes a first catalytic converter, an oxidation catalyst including a storage catalyst, an air injector, and a cooling unit. The exhaust aftertreatment system is fluidly coupled to an output of a spark-ignited internal combustion engine that operates in the rich regime during acceleration and the lean regime during deceleration. In one aspect, the storage catalyst stores ammonia produced while the engine operates in the rich regime. The stored ammonia reacts with nitrogen oxide compounds produced when the engine operates in the lean regime. In another aspect, the nitrogen oxide compounds react with ammonia produced while the engine operates in the rich regime.
Abstract:
Exhaust generated from an internal combustion engine includes particulates and gas-phase volatile hydrocarbon condensables. The exhaust is cooled in an exhaust gas cooler from a first temperature to a second temperature such that a first portion of the gas-phase volatile hydrocarbon condensables in the exhaust condense to the liquid phase and a second portion of the gas-phase volatile hydrocarbon condensables in the exhaust condense on black carbon particles to form semivolatile brown carbon particulates. Some or all of the liquid-phase volatile hydrocarbon condensables and the semivolatile brown carbon particulates are trapped in a gasoline particulate filter or a catalyzed gasoline particulate filter located downstream of the exhaust gas cooler.
Abstract:
Methods and apparatus for removing undesired pollutants from exhausts streams of spark-ignited internal-combustion engines in vehicles while producing electrical energy as a byproduct. The apparatus includes a reduction catalyst, a thermoelectric generator (TEG), and an oxidation catalyst. The TEG cools the exhaust stream and generates electricity. The exhaust stream is oxygenated after passing through the TEG and prior to passing through the oxidation catalyst.
Abstract:
A poison-resistant catalytic converter includes a washcoat having a support material comprised of titania and/or silica and a plurality of platinum group metal particles disposed in the support material. The washcoat is disposed on a substrate having a plurality of cells that define respective apertures. The catalytic converter is resistant to poisoning from sulfur and phosphorous compounds while operating at low temperatures. Applications include spark ignited internal combustion engines in combined heat and power systems, vehicles, combustion turbines, boilers and other applications for utilities, industry and vehicle emissions control.
Abstract:
A poison-resistant catalytic converter includes a washcoat having a support material comprised of titania and/or silica and a plurality of platinum group metal particles disposed in the support material. The washcoat is disposed on a substrate having a plurality of cells that define respective apertures. The catalytic converter is resistant to poisoning from sulfur and phosphorous compounds while operating at low temperatures. Applications include spark ignited internal combustion engines in combined heat and power systems, vehicles, combustion turbines, boilers and other applications for utilities, industry and vehicle emissions control.
Abstract:
A system for reducing ammonia in exhaust gas generated from a lean burn internal combustion engine includes an oxidation catalyst, a selective reduction catalyst (SCR), a cooling unit, and a three-way catalyst. Exhaust gas generated by the engine passes through the oxidation catalyst to oxidize carbon monoxide from the exhaust gas to form carbon dioxide. Nitrous oxide (NOx) compounds in the exhaust gas are reduced in the SCR to form nitrogen and water. The exhaust gas is then cooled in a cooling unit and then passed over the three-way catalyst. The three-way catalyst causes ammonia in the cooled exhaust stream to react to form less harmful compounds, such as nitrogen and water.
Abstract:
Systems and methods of reducing the emissions of vehicles having a spark ignited internal combustion engine are provided. When the exhaust temperature is less than a set point temperature, the oxygen concentration of the exhaust is increased as the exhaust passes from a first stage catalytic converter to a second stage catalytic converter. The increased oxygen content of the exhaust improves the removal efficiency of carbon monoxide and/or hydrocarbons at the second stage catalytic converter without (or with minimal) reforming nitrogen oxide compounds. The oxygen concentration of the exhaust is not increased when the exhaust temperature is greater than the set point temperature.
Abstract:
A system and method for controlling an internal combustion engine and electrical inverter system for powering a load, including controlling the operation of a spark-ignited internal combustion engine prime mover used in generation of electrical power by way of a generator. A microprocessor (e.g., DSP) controlled circuit taking engine speed input from an engine speed signal is used to control the operation of the internal combustion engine prime mover so that it is preferably operated substantially at wide open throttle.