Abstract:
A method for producing yarns separated from reinforcing fiber strands including a process of intermittently separating fibers of the reinforcing fiber strands.
Abstract:
According to an aspect of the present invention, there is provided a method for producing cut bodies including: cutting a fiber-reinforced resin material including reinforcing fibers having a tensile strength of 1,000 MPa to 6,000 MPa and a thermoplastic resin, wherein a flexural modulus of the fiber-reinforced resin material is decreased to 80% to 15% at the cutting.
Abstract:
Provided is a reinforcing fiber mat including a reinforcing fiber mat constituted by reinforcing fibers having an average fiber length of 3 to 100 mm. The reinforcing fibers satisfy the following i) to iv): i) a weight-average fiber width (Ww) of the reinforcing fibers satisfies the following Equation (1): 0.03 mm
Abstract:
There is provided a random mat including reinforcing fibers having an average fiber length of 3 to 100 mm and a thermoplastic resin, wherein the reinforcing fibers satisfy the following i) to iii). i) The reinforcing fibers have a weight-average fiber width (Ww) which satisfies the following equation (1). 0 mm
Abstract:
A method for producing yarns separated from reinforcing fiber strands including a process of intermittently separating fibers of the reinforcing fiber strands.
Abstract:
A composite material which includes a thermoplastic matrix resin and carbon fibers A including carbon fiber bundles A1 in which Li/(Ni×Di2) satisfies 6.7×101 to 3.3×103, wherein the carbon fibers A have a fiber length of 5-100 mm and have a value of LwA1/(NA1ave×DA12) of 1.0×102 to 3.3×103, the carbon fiber bundles A1 having an average bundle width WA1 less than 3.5 mm and being contained in an amount of 90 vol % or larger with respect to the carbon fibers A A production method for producing a molded object from the composite material is also provided.
Abstract:
A carbon-fiber-reinforced resin composite material includes: carbon fibers including carbon fiber bundles and a thermoplastic resin, in which (1) a coefficient of variation (CV1) of a total areal weight of the carbon-fiber-reinforced resin composite material is 10% or lower, (2) a coefficient of variation (CV2) of a carbon fiber volume fraction (Vf) in the carbon-fiber-reinforced resin composite material which is defined by Expression (a) is 15% or lower, and (3) a weight average fiber length of the carbon fibers is 1 to 100 mm. Carbon Fiber Volume Fraction (Vf)=100×Volume of Carbon Fibers/(Volume of Carbon Fibers+Volume of Thermoplastic Resin) Expression (a).
Abstract:
A carbon-fiber-reinforced resin composite material includes: carbon fibers including carbon fiber bundles and a thermoplastic resin, in which (1) a coefficient of variation (CV1) of a total areal weight of the carbon-fiber-reinforced resin composite material is 10% or lower, (2) a coefficient of variation (CV2) of a carbon fiber volume fraction (Vf) in the carbon-fiber-reinforced resin composite material which is defined by Expression (a) is 15% or lower, and (3) a weight average fiber length of the carbon fibers is 1 to 100 mm. Carbon Fiber Volume Fraction (Vf)=100×Volume of Carbon Fibers/(Volume of Carbon Fibers+Volume of Thermoplastic Resin) . . . Expression (a).
Abstract:
Provided is a fiber-reinforced composite material shaped product having isotropy and mechanical strength and a random mat used as an intermediate material thereof.The random mat includes reinforcing fibers having an average fiber length of 3 to 100 mm and a thermoplastic resin, in which the reinforcing fibers satisfy the following i) to iii).i) A weight-average fiber width (Ww) of the reinforcing fibers satisfies the following Equation (1). 0.03 mm
Abstract:
A shock absorption member which is lightweight, has a high degree of freedom in shape, and is capable of efficiently absorbing shock energy, is provided.A shock absorption member including a bottom surface part and an upright part provided on the bottom surface part, in which at least one of the bottom surface part and the upright part includes a carbon-fiber-reinforced composite material including a thermoplastic resin, and the other may include a thermoplastic resin, and in which the amount of the thermoplastic resin present therein is 30 to 1,000 parts by mass based on 100 parts by mass of carbon fibers, and the average fiber length of the carbon fibers is 3 to 100 mm.