摘要:
Disclosed are embodiments of a system and a method that allow for wireless and dynamic intra-process (i.e., during and/or between process steps) measurements of integrated circuit parameters. The embodiments incorporate the use of a passive circuit, such as an inductor-capacitor-resistor (LCR) circuit resonator, that has a predetermined sensitivity to process variations in one or more physical or electrical integrated circuit parameters. The passive circuit can be wirelessly interrogated between and/or process steps. Then, the actual behavior exhibited by the passive circuit in response to the interrogation is compared to the expected behavior of an optimal circuit in the absence of process variations in order to determine the one or more parameters. Also disclosed is an embodiment of an exemplary passive circuit that can be used to implement the disclosed system and method embodiments.
摘要:
Disclosed are embodiments of a system and a method that allow for wireless and dynamic intra-process (i.e., during and/or between process steps) measurements of integrated circuit parameters. The embodiments incorporate the use of a passive circuit, such as an inductor-capacitor-resistor (LCR) circuit resonator, that has a predetermined sensitivity to process variations in one or more physical or electrical integrated circuit parameters. The passive circuit can be wirelessly interrogated between and/or process steps. Then, the actual behavior exhibited by the passive circuit in response to the interrogation is compared to the expected behavior of an optimal circuit in the absence of process variations in order to determine the one or more parameters. Also disclosed is an embodiment of an exemplary passive circuit that can be used to implement the disclosed system and method embodiments.
摘要:
A method of optimizing power usage in an integrated circuit design analyzes multiple operating speed cut points that are expected to be produced by the integrated circuit design. The operating speed cut points are used to divide identically designed integrated circuit devices after manufacture into relatively slow integrated circuits and relatively fast integrated circuit devices. The method selects an initial operating speed cut point to minimize a maximum power level of the relatively slow integrated circuits and relatively fast integrated circuit devices. The method then manufactures the integrated circuit devices using the integrated circuit design and tests the operating speeds and power consumption levels of the integrated circuit devices. Then, the method adjusts the initial cut point to a final cut point based on the testing, to minimize the maximum power level of the relatively slow integrated circuits and relatively fast integrated circuit devices.
摘要:
Methods and systems optimize power usage in an integrated circuit design by sorting the integrated circuit devices after manufacture into relatively slow integrated circuit devices and relatively fast integrated circuit devices to classify the integrated circuit devices into different voltage bins. The methods and systems establish a bin-specific reliability testing processes for each of the voltage bins and test the integrated circuit devices using a tester. This allows the methods and systems to identify as defective ones of the integrated circuit devices that fail the bin-specific integrated circuit reliability testing processes of a corresponding voltage bin. The methods and systems remove the defective ones of the integrated circuit devices to allow only non-defective integrated circuit devices to remain and supply the non-defective integrated circuit devices to a customer.
摘要:
A system and method is provided for optimizing semiconductor power by integration of physical design timing and product performance measurements. The method includes: establishing a timing run and identifying a sigma code for the timing run; establishing ring oscillator bins and respective code; identifying a required timing run for a second level assembly to satisfy a selected voltage bin; timing a product using the required timing run; testing a ring oscillator of the product using the timing to obtain physical design identification; recording the physical design identification and the sigma code for the timing run; and using the recorded physical design identification and the sigma code to set a voltage for the product to optimize power.
摘要:
A plurality of digital circuits are manufactured from an identical circuit design. A power controller is operatively connect to the digital circuits, and a non-volatile storage medium is operatively connected to the power controller. The digital circuits are classified into different voltage bins, and each of the voltage bins has a current leakage limit. Each of the digital circuits has been previously tested to operate within a corresponding current leakage limit of a corresponding voltage bin into which each of the digital circuits has been classified. The non-volatile storage medium stores boundaries of the voltage bins as speed-binning test data. The power controller controls power-supply signals applied differently for each of the digital circuits based on which bin each of the digital circuit has been classified and the speed-binning test data.
摘要:
A plurality of digital circuits are manufactured from an identical circuit design. A power controller is operatively connect to the digital circuits, and a non-volatile storage medium is operatively connected to the power controller. The digital circuits are classified into different voltage bins, and each of the voltage bins has a current leakage limit. Each of the digital circuits has been previously tested to operate within a corresponding current leakage limit of a corresponding voltage bin into which each of the digital circuits has been classified. The non-volatile storage medium stores boundaries of the voltage bins as speed-binning test data. The power controller controls power-supply signals applied differently for each of the digital circuits based on which bin each of the digital circuit has been classified and the speed-binning test data.
摘要:
A method of optimizing power usage in an integrated circuit design analyzes multiple operating speed cut points that are expected to be produced by the integrated circuit design. The operating speed cut points are used to divide identically designed integrated circuit devices after manufacture into relatively slow integrated circuit devices and relatively fast integrated circuit devices. The method selects an initial operating speed cut point to minimize a maximum power consumption level of the relatively slow integrated circuit devices and the relatively fast identically designed integrated circuit devices. The method then manufactures the integrated circuit devices using the integrated circuit design and tests operating speeds and power consumption levels of the identically designed integrated circuit devices. Then, the method adjusts the initial operating speed cut point to a final operating speed cut point based on the testing, to minimize the maximum power consumption level of the relatively slow integrated circuit devices and the relatively fast integrated circuit devices.
摘要:
A design structure for an integrated circuit that includes input/output (I/O) state saving circuitry capable of stabilizing the I/O states during any predicted I/O disturbance event. The I/O state saving circuitry includes a plurality of transparent latches arranged between the output of a plurality of respective I/O receivers and the internal digital, analog, or mixed-signal circuitry of the integrated circuit. The transparent latches are transitioned between a pass-through mode and a state-saving mode via a common control signal. In anticipation of, for example, a predicted I/O signal disturbance generating event, the transparent latches are set to the state-saving mode. Consequently, the outputs of the transparent latches are held stable and glitchless during the disturbance event, which ensures that the internal logic of the integrated circuit does not lose state.
摘要:
A design structure for monitoring of the performance of semiconductor circuits, such as circuit delay, across a chip. The design structure may include a clock source and a plurality of process monitors. The design structure may be used to construct a “schmoo plot” by varying a frequency of the clock source to determine the delay of process monitors at various locations across the chip.