Abstract:
An antenna according to an aspect includes: a dielectric window having a first surface and a second surface, the second surface having an annular recessed surface and a flat surface surrounded by the recessed surface; a slot plate; a dielectric plate; a heat transfer member made of metal and having an upper surface and a lower surface opposing each other; a cooling jacket; and a heater, in which the upper surface includes a plurality of first regions and a second region, the cooling jacket is mounted on the plurality of first regions, the second region is recessed further toward the lower surface side than the plurality of first regions, the heater is mounted on the second region, and each of the plurality of first regions is provided at a position at least partially overlapping with the flat surface when viewed in a direction parallel to a central axis.
Abstract:
Detection accuracy of a power of a progressive wave and detection accuracy of a power of a reflection wave can be improved. In a plasma processing apparatus, a first directional coupler is provided in a first waveguide which is configured to connect a microwave generating unit and a first port of a circulator. A first detector is connected to the first directional coupler. A second port of the circulator is connected to a plasma generating unit via a second waveguide. Further, a second directional coupler is provided in a third waveguide which is configured to connect a third port of the circulator and a dummy load. A second detector is connected to the second directional coupler.
Abstract:
A plasma processing apparatus 1 includes a central inlet unit that introduces a processing gas containing at least one of an Ar gas, a He gas and an etching gas toward a central portion of a wafer W; a peripheral inlet unit 61 that introduces the processing gas toward a periphery portion thereof; a flow rate adjusting unit that adjusts a flow rate of the processing gas introduced toward the central portion thereof from the central inlet unit 55 and a flow rate of the processing gas introduced toward the periphery portion thereof from the peripheral inlet unit 61; and a controller 49 that controls the flow rates of the processing gas adjusted by the flow rate adjusting unit such that a partial pressure ratio of the He gas to the Ar gas contained in the processing gas is equal to or higher than a preset value.
Abstract:
A plasma processing apparatus comprises a processing chamber, a gas supply unit, a power supply unit and a frequency control unit. The processing chamber accommodates a target object. The gas supply unit supplies a processing gas into the processing chamber. The power supply unit supplies a power of a predetermined frequency band into the processing chamber to generate plasma of the processing gas in the processing chamber. The frequency control unit sweeps a frequency of the power supplied into the processing chamber by the power supply unit from a first frequency to a second frequency at the time of generating the plasma of the processing gas in the processing chamber.
Abstract:
A plasma processing apparatus includes a processing vessel; a carrier wave group generating unit configured to generate a carrier wave group including multiple carrier waves having different frequencies belonging to a preset frequency band centered on a predetermined center frequency; a plasma generating unit configured to generate plasma by using the carrier wave group; a spectrum detecting unit configured to detect a progressive wave spectrum and a reflection wave spectrum of the carrier wave group; and a control unit configured to calculate, by using the progressive wave spectrum and the reflection wave spectrum, an absorption power which is a power of the carrier wave group absorbed into the plasma, and configured to adjust a parameter, which varies a minimum value of the reflection wave spectrum and a frequency corresponding to the minimum value, such that the absorption power becomes equal to or larger than a threshold value.
Abstract:
A dielectric window for a plasma treatment device for a plasma treatment device that uses microwaves as a plasma source. The dielectric window is circular-plate-shaped and allows microwaves to propagate. The dielectric window has a recess that has an opening on the lower-surface side and that indents in the plate thickness direction of the dielectric window, and is provided to the lower surface at which plasma is generated when the dielectric window is provided to the plasma treatment device. The recess has a bottom surface extending in the direction perpendicular to the plate thickness direction, and a side surface extending in the plate thickness direction from the circumferential edge of the bottom surface toward the opening of the recess. In addition, an inclined surface extends at an incline relative to the plate thickness direction from the opening-side circumferential edge of the side surface toward the opening of the recess.
Abstract:
A plasma processing apparatus includes a microwave output unit, a wave guide tube, a tuner, a demodulation unit, and a calculation unit. The microwave output unit outputs a microwave having power corresponding to setting power while frequency-modulating the microwave in a setting frequency range. The wave guide tube guides the microwave to an antenna of a chamber main body. The tuner is provided in the wave guide tube and adjusts a position of a movable plate. The demodulation unit is provided in the wave guide tube, and acquires travelling wave power and reflected wave power for each frequency. The calculation unit calculates a frequency at which a reflection coefficient, which is calculated on the basis of the travelling wave power and the reflected wave power, for each frequency becomes a minimum point as an absorption frequency.
Abstract:
An antenna device according to an exemplary embodiment radiates electromagnetic waves. In the antenna device, a dielectric window is in contact with a lower wall of a first waveguide, the first waveguide is provided between the dielectric window and a second waveguide and extends in a direction crossing a tube axis of the second waveguide, a dispersion part in the first waveguide disperses the electromagnetic waves in the first waveguide, two inner conductors disposed at different distances from the tube axis and connected to the dielectric window include coaxial conversion parts which cause propagation of the electromagnetic waves dispersed by the dispersion part to direct to the dielectric window side, a body length of the inner conductor most distant from the tube axis, out of body lengths of the two inner conductors, is longer, and a front surface of the dielectric window does not have irregularities.
Abstract:
A dielectric window for a plasma treatment device for a plasma treatment device that uses microwaves as a plasma source. The dielectric window is circular-plate-shaped and allows microwaves to propagate. The dielectric window has a recess that has an opening on the lower-surface side and that indents in the plate thickness direction of the dielectric window, and is provided to the lower surface at which plasma is generated when the dielectric window is provided to the plasma treatment device. The recess has a bottom surface extending in the direction perpendicular to the plate thickness direction, and a side surface extending in the plate thickness direction from the circumferential edge of the bottom surface toward the opening of the recess. In addition, an inclined surface extends at an incline relative to the plate thickness direction from the opening-side circumferential edge of the side surface toward the opening of the recess.
Abstract:
In one exemplary embodiment, a second waveguide is connected to an upper wall of a first waveguide and communicates with the first waveguide, a dielectric window is in contact with a lower wall of the first waveguide, a first inner conductor penetrates an upper wall, is electrically connected with the upper wall, and extends along the direction of a tube axis from an inside of the first waveguide to an inside of a third waveguide, the third waveguide is connected to the lower wall on the dielectric window side and communicates with the first waveguide, a first opening end of the third waveguide is connected to the dielectric window, and a drive device is connected to the first inner conductor, and is configured to drive the first inner conductor in the direction of the tube axis.