摘要:
Ceramic composite material that has excellent mechanical properties within a range from room temperature to high temperature and high die release with respect to glass, resins, ceramics, and similar substances. The ceramic composite material is composed of a ceramic phase and a phase containing 2 to 98 wt. % carbon and/or boron nitride as the main component, and that has a mean particle size of 100 nm or less, wherein the thermal expansion coefficient is within a range of 2.0-9.0×10−6/° C. and the surface roughness after surface polishing is 0.05 μm or less. The sintered body of the material is obtained by sintering a mixture of powdered starting materials at a sintering temperature of 800-1500° C. and a sintering pressure of 200 MPa or higher.
摘要:
Highly wear-resistant, low-friction ceramic composites suited for machining-tool, sliding-component, and mold-die materials are made available. The ceramic composites characterized are constituted from a phase having carbon of 3 μm or less, preferably 30 nm or less, average crystal-grain size as the principal component, and a ceramic phase (with the proviso that carbon is excluded). The ceramic phase is at least one selected from the group made up of nitrides, carbides, oxides, composite nitrides, composite carbides, composite oxides, carbonitrides, oxynitrides, oxycarbonitrides, and oxycarbides of Al, Si, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and W. The ceramic composites are produced by sintering the source-material powders at a sintering temperature of 800 to 1500° C. and a sintering pressure of 200 MPa or greater.
摘要:
Ceramic composite material that has excellent mechanical properties within a range from room temperature to high temperature and high die release with respect to glass, resins, ceramics, and similar substances. The ceramic composite material is composed of a ceramic phase and a phase containing 2 to 98 wt. % carbon and/or boron nitride as the main component, and that has a mean particle size of 100 nm or less, wherein the thermal expansion coefficient is within a range of 2.0-9.0×10−6/° C. and the surface roughness after surface polishing is 0.05 μm or less. The sintered body of the material is obtained by sintering a mixture of powdered starting materials at a sintering temperature of 800-1500° C. and a sintering pressure of 200 MPa or higher.
摘要:
Highly wear-resistant, low-friction ceramic composites suited for machining-tool, sliding-component, and mold-die materials are made available. The ceramic composites characterized are constituted from a phase having carbon of 3 μm or less, preferably 30 nm or less, average crystal-grain size as the principal component, and a ceramic phase (with the proviso that carbon is excluded). The ceramic phase is at least one selected from the group made up of nitrides, carbides, oxides, composite nitrides, composite carbides, composite oxides, carbonitrides, oxynitrides, oxycarbonitrides, and oxycarbides of Al, Si, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and W. The ceramic composites are produced by sintering the source-material powders at a sintering temperature of 800 to 1500° C. and a sintering pressure of 200 MPa or greater.
摘要:
A spinel sintered body has a composition of MgO·nAl2O3 (1.05≦n≦1.30) containing 20 ppm or less of Si element. A production method thereof includes the steps of: forming a compacted body from a spinel powder containing 50 ppm or less of Si element and having a purity of not less than 99.5 mass %; a first sintering step of forming a sintered body having a density of not less than 95% by sintering the compacted body at 1500° C. to 1700° C. in a vacuum; and a second sintering step of subjecting the sintered body to pressurized sintering at 1600° C. to 1800° C.
摘要翻译:尖晶石烧结体具有含有20ppm以下的Si元素的MgO·nAl 2 O 3(1.05≦̸ n≦̸ 1.30)的组成。 其制造方法包括以下步骤:由含有50ppm以下Si元素,纯度为99.5质量%以上的尖晶石粉末形成压实体; 通过在真空中在1500℃〜1700℃下烧结压实体,形成密度不低于95%的烧结体的第一烧结步骤; 以及第二烧结步骤,使烧结体在1600℃至1800℃下进行加压烧结。
摘要:
An optical element being high in productivity and capable of ensuring a large bonding area, and a production method of the optical element. At mold opening when a top part (120) provided with a round portion (121) moves upward, a preform is placed in an inner space the interior of which is formed by a rectangular sleeve (110) and the round portion (131) of a bottom part (130). At mold clamping when the top part (120) moves downward, the preform is pressurized. That is, a convex lens portion is transferred by the concave curved surface (122) and the edge surface (123) of the round portion (121) and the concave curved surface (132) and the edge surface (133) of the round portion (131). The four side surfaces of an optical element (1) are transferred by the inner wall surface (110a) of the sleeve (110). Further, part of the preform jumps out into the gap portion (140) between the outer peripheral surfaces (121a, 131a) of the round portions (121, 131) and the inner wall surface (110a) of the sleeve (110) to thereby form a protrusion portion of the optical element (1). The optical element (1) has a marker (2) formed on the top surface (11a) of its body, and the marker (2) may be formed to extend linearly along the optical axis of lens portions (12, 16). The marker (2) is formed to protrude from the top surface (11a). The side surface (11b) and the side surface (11c) of the body may be formed such that the separating distance between the side surface (11b) and the side surface (11c) gradually increases toward a bottom surface (11d).
摘要:
There is provided a method of manufacturing a group-III nitride crystal in which a nitrogen plasma is brought into contact with a melt containing a group-III element and an alkali metal to grow the group-III nitride crystal. Furthermore, there is also provided a method of manufacturing a group-III nitride crystal in which the group-III nitride crystal is grown on a substrate placed in a melt containing a group-III element and an alkali metal, with a minimal distance between a surface of the melt and a surface of the substrate set to be at most 50 mm.
摘要:
A conductive silicon nitride composite sintered body having an average grain size of 100 nm or less and whose relative roughness (Ra) after electric discharge machining is 0.3 μm or less can be obtained by grinding/mixing a silicon nitride powder and a metal powder together until the average particle size of the silicon nitride powder becomes 30 nm or less, and subsequently by molding and sintering. It is preferable that the crushing/mixing is continued until it is apparent that a peak of added metal in an X-ray diffraction pattern has disappeared during the crushing/mixing.
摘要:
An object of this invention is to prevent drop of life of a bearing by an axial force when using a pump as a compressor. In a vacuum pump 1 compressing and discharging gas in a direction of a rotor axis by rotation of screw rotors 3, 4 engaged together which are supported rotatably in a casing 2, balance pistons 13, 14 are disposed on shafts 6, 7 of said screw rotors at inlet side of said casing. The balance pistons separate a receiving section 17 at area of the screw rotor and a pressurizing section 16 at area of the balance piston, and a thrust force of the screw rotors at a pressurizing condition is canceled by acting the discharge pressure in the pressurizing section. The pump is used as a compressor when the discharge pressure is acted on the balance pistons 13, 14. When the pump is used as a vacuum pump, air at discharge side is sucked as cool air through a cooler toward a place near to the discharge side of the receiving section 17 at area of the screw rotor.
摘要:
A hollow cylindrical pulley body 5 is carried rotatably by a hollow cylindrical shaft member 11. A support rod 8 is inserted in the shaft member 11 to support the shaft member 11 for rocking motion about a pivot axis C2 orthogonal to the shaft member 11. The pivot axis C2 is inclined backward in the direction of belt travel with respect to the direction of load on the shaft member 11. With this configuration, when the drive belt 3 deviates to one side, the pulley body 5 is immediately angularly moved so that it is inclined with a level difference with respect to the direction of load on the shaft member 11 and is positioned obliquely relative to the drive belt 3, thereby producing a force of returning the drive belt 3 to its normal position.