Abstract:
This invention relates to an arrangement for attaching discrete electrical components to a generally flat layer of sheet material. Both mechanical and electrical connections are provided by the attachment elements of the present invention. One form of the invention is directed to a membrane switch keyboard wherein one of the layers of the membrane switch has a tail extending therefrom. The tail has a free end which is adhesively secured to some portion of the keyboard. Conductive traces are formed on the tail and extend to the free end where they contact the leads of an electrical component. The component is held between the tail and the keyboard. In another aspect, which may be applied to the membrane switch keyboard just described, the invention includes a sheet material having two or more slits cut therein for each of the component's leads. The slits are cut in a portion of the sheet having conductive traces formed thereon. The leads of the component are then interlaced through the tabs created by the slits to both mechanically and electrically connect the component to the sheet.
Abstract:
A switching device, for example a membrane switch, having an interconnect tail for electrically connecting the switching device to a circuit board. The tail has conductive traces formed thereon, which are in circuit with the conductive elements of the switching device. The conductive traces on the tail are raised from the plane of the tail thus making the traces the most prominent part of the tail. This structure assures electrical contact with the circuit board.
Abstract:
A flexible connector includes a flat thin insulating base and a plurality of spaced conductive paths formed thereon. There are means for providing selective interconnection between certain conductive paths on the base, which means includes a thin defined insulating patch positioned upon a selective area of the base and conductive paths. A connecting conductive path is formed on the insulating patch and extends therethrough into electrical contact with said certain conductive paths.
Abstract:
A membrane switch of the type actuated by bending is manufactured from a blank of flexible sheet material. An appropriate pattern of conductors is silk-screened on first and second portions of the blank. Then an insulative spacing means is silk-screened onto the first and second portions in a symmetrical pattern. Adhesive is applied to the blank. Hinges are formed along the line of symmetry of the spacing means and the second portion of the blank is folded over the first portion along these hinges to complete the switch. The adhesive holds the folded switch together with the first portion of the blank forming the switch substrate and the second portion forming the membrane.
Abstract:
A touch actuated electronic switch is disclosed including at least one surface, accessible to the touch of a human, interconnected with an active circuit and protected against static electricity. In the preferred embodiment, the active circuit is differential sensing circuitry, preferably, dual input logic circuitry, and most requiring protection from static electricity at this time, a MOS exclusive OR gate. In the preferred embodiment where the interconnection between the logic circuit and the surfaces is desired to include long wires, a twisted pair of wires is used if increased noise immunity or noise protection is desired. The twisted pair is interconnected at one end with one wire electrically connected to the touch surface and the other substantially equal length wire being unconnected or connected to a second touch surface. Both wires are connected at their other ends to the dual inputs to the logic circuitry. Also connected to the dual inputs are dual impedances which, when taken together with the impedance of the body of the human operator, provide protection against static or other high potential electricity. A common mode alternating voltage signal is then provided through input circuitry to the logic circuitry, and the output of the logic circuitry is interconnected to an integrator, in the preferred embodiment a capacitor. The integrator is, in turn in the preferred embodiment, connected to an additional amplifier. The output terminals of the additional amplifier, in the preferred embodiment, act as an electrical switch with the electrical impedance across the output terminals in a first state assuming a high impedance, electrical open circuit, or "OFF" switch condition and in the second state assuming a low impedance, electrical short circuit, or "ON" switch condition to thereby approximate the two states of a conventional mechanical electrical switch, the condition assumed by the second amplifier being dependent upon whether or not an operator has touched a touch surface.
Abstract:
An assembly for manufacture of a membrane switch includes a composite formed of first and second layers, one substantially thicker than the other, with the composite having a size and shape to form both outer members of a membrane switch when folded back upon itself. Metallic conductors, preferably silver, are formed on the composite prior to folding. A spacer member having spaced openings therein and extending over approximately half of the area of the composite is positioned thereupon. After the composite is folded over the spacer member, laminating heat and pressure are applied to the assembly with the result that a bond is formed between the spacer member and composite and between the layers of the composite.
Abstract:
A method and apparatus for forming a membrane switch of the type having a flexible membrane, a substrate, first and second conductors formed on the membrane and substrate and spacing means disposed between the first and second conductors. The spacing means is applied to either the membrane or substrate in a uniform pattern of individual spacer areas. The spacer areas are applied in liquid form which is cured or allowed to dry. The pattern of spacer areas can be applied without regard to the location of the conductors. The size, spacing and thickness of the spacer areas allow contact between aligned first and second conductors when the exterior of the membrane is subjected to pressure. Thus the same pattern of spacer areas can be used with any arrangement of conductors.
Abstract:
An electronic switch which has no moving parts and is actuated by the capacitance of an operator providing a connection between earth ground and an input to the electronics associated with the switch is disclosed. The electronic switch in the preferred embodiment, includes a plate accessible to the tough of a human operator electrically connected to a first amplifier, and particularly to the input which is isolated from and thus oscillating with respect to earth ground. The output of the first amplifier is simultaneously connected to one end of a storage capacitor, having its other end connected to earth ground, and to one end of a high impedance. A second amplifier, is connected to the other end of the high impedance to provide a switched output, with the switched output having a first state for approximating an electrical short circuit and a second state for approximating an electrical open circuit.
Abstract:
A membrane switch panel has patches of low creep material attached to the membrane at portions thereof which are subject to creep. Membrane switch panels may be incorporated in keyboards wherein some of the keys may be of the alternate action type. If the alternate action keys are left in an actuated position and the keyboard is stored at a high temperature, the membrane material may be subject to creep. The present invention prevents this by including a stainless steel patch on the membrane under each alternate action type key. The stainless steel patch will not creep at elevated storage temperatures. The patch causes the membrane to be restored to its original location even after being subjected to conditions which would cause the membrane material to creep.
Abstract:
A conductive adhesive for use in membrane switch and printed circuit technologies consists essentially of a resin modified copolymer of butadiene and styrene and a conductive element. The conductive element is preferably a material such as acetylene black and is more than two percent and less than 40 percent by weight of the adhesive. The conductive adhesive may be used to secure the membrane and substrate of a membrane-type switch thereby providing a conductive path between the membrane and substrate. The adhesive may also be used to attach a membrane switch tail to an associated printed circuit board or the like, again with the conductive properties of the adhesive providing a current path as well as the conventional adhesion between the two parts.